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ABSTRACT.

This paper presents two applications of the RADSER model updating technique (ref. 1). The RADSER technique
updates finite element modcl parameters by solution of a linearised set of equations that optimise the Reduced
Analytical Dynamic Stiffness matrix based on Experimental Receptances.

The first application deals with the identification of the dynamice characteristics of rubber mounts.

The second application validates a coarse finite element model of a subframe of a Volvo 480,



INTRODUCTION.

In the design and optimisation of vehicles, numerical models for the prediction of the noise and vibration behaviour
play an important role. The validity and reliability of these models can be drastically improved by application of so
called ‘model updating’ techniques. Model updating aims at the verification and correction of numerical models of
dynamic structures by means of comparison with experimentally obtained data about the noise and vibration
behaviour of the real structure.

This paper discusses the application of a FRF based model updating technique in two different case studies with
components of the automotive industry.

The presented updating technique corrects finite element models based on experimentally obtained receptances. The
values of a selection of element or material properties of the numerical model are updated in an iterative procedure
that matches the numerical receptances with the experimental ones for a selection of frequency points.

The first case study identifies the axial stiffness and damping value of rubber mounts. This rather academic case
study shows the use of the presented updating technique for determination of an appropriate damping approach for
the description of the mounts in a finite element model. Application of damping in a finite element model is most
often a rather cumbersome problem.

The second case study validates a very coarse finite element model of a subframe of a car. Starting from somewhat
noisy measurements and via selections of updating parameters and updating frequencies based on simple rules of
thumb and common sense, the updating process gives reliability to a coarse, and thus cheap, finite element model.
THE RADSER UPDATING METHOD.

This section shortly explains the RADSER updating method. A detailed discussion can be found in ref. 1.
Mixed static-dynamic reduction.

The following technique is used for reduction of the analytical dynamic stiffness matrix.
The full set of analytical degrees of freedom is partitioned in three groups:

s the active degrees of freedom,

e the 'statically deleted' degrees of freedom,

e the 'dynamically deleted' degrees of freedom.

The statically deleted degrees of freedom are a set of degrees of freedom that can be climinated from the system
matrices by static reduction without a major loss of accuracy. Rotational degrees of freedom for a 3D-beam structure
are for instance well suited to be statically deleted degrees of freedom. The dynamically deleted degrees of frecdom
are all deleted degrees of freedom that cannot be climinated by means of static reduction without introducing

unacceptable inaccuracies in the system matrices. With this partition following reduction scheme can be used to
compute the reduced dynamic stiffness matrices needed in the RADSER updating method:

1. Compute the full mass and stiffness matrices.

2. Reduce these matrices with the static reduction method to the combined set of active and dynamically deleted
degrees of freedom.

3. Assemble the statically reduced dynamic stiffness matrix.



4. For each updating frequency, reduce the statically reduced dynamic stiffness matrix with the exact dynamic
reduction method to the set of active degrees of freedom.

This simple scheme reduces the required computational effort substantially and hardly influences the accuracy of the
eventual reduced dynamic stiffness matrix.

Minimisation of the indirect receptance difference.

Consider a set of updating frequencies {w;} and a set of updating parameters {#}. For each ©; the dynamic
stiffness matrix is created from the analytical mass, stiffness and (viscous or structural) damping matrix:
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The above explained reduction scheme yields the reduced dynamic stiffness matrix [Zf] .

For each ®; the residual forces {8 ; } are written as a function of the updating parameters:
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where:
{u} }_,- : experimental FRF with ref. j at freq. o;
{1}j:  vector, component = L, all other comp. = 0

{4} :  original values of the updating parameters

Using a first order Taylor cxpansion for [AZ,.R({AL{})] yields:
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Considering the noise on the measurements, equation (5) is ill conditioned. Premultiplying this equation by the
inverse of the dynamic stilfness matrix yields a better conditioned equation:
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The lelt hand side of (6) is called the indirect receptance residue.

The combination of the indirect receptance residue for all updating frequencies w; results in a linearised
minimisation problem:

miffe] )= {le) ®

This linearised minimisation problem is solved iteratively with a least squares approach.

IDENTIFICATION OF MOUNTS.

This case study shows the use of the RADSER model updating technique for the identification of localised
damping characteristics. It is a simple and very specific case study. The subject of the case study is the determination
of the axial damping and stiffness characteristics of three rubber mounts.

Figure 1 shows the set up. An equilateral steel triangle is connected to a large steel mass through three equal
mounts. The mounts are put symmetric with respect to the center of the triangle. In the frequency range of interest, O
to 150 Hz, the triangle can be seen as a rigid body. Only motion in the z-direction, the axial direction of the mounts,
is considered. This configuration is used to determine the axial damping and stiffness characleristics of the mounts
using the RADSER model updating technique. The siructure was measured experimentally and a finite element
analysis was performed.

Experimental set up.

Figure 2 shows the experimental set up. Four accelerometers, PCB Structcel 330A, are placed on the triangle; one

in the center (upside down at the bottom side of the triangle) and the three other each in the middle between two

mounts. In the center of the triangle a force cel, PCB 208B, is connected. Via the force cel, the excitation force is
applied on the structure. The force is generated by a LDS V406 shaker. The test set up is very specific and selectif.
Great care was taken to obtain clean and accurate measurements. Everything is focused on the identification of the
axial damping and stiffness of the mounts. The configuration is chosen such that residual effects of flexibilities of the
mounts in other directions than the axial direction are excluded from the test as much as possible. The only motion
that can be excited and measured is a displacement of the triangle as a rigid body in the z-direction with possibly
rotations about the x- and y-axis, but without any translation in the x- or y-direction and without any rotation about
the 7-axis. For small displacements, the mounts are thus only loaded in their axial direction. Table 1 gives an
overview of some aquisition parameters.

Figure 3 shows superimposed the four receptances that were measured. They are almost identical. Since the mounts
are identical and they are put symmetric with respect to the center of the equilateral triangle and since the triangle
was excited at its center, a purc z-translation of the triangle is measured.



Analytical model.

An analytical model of the structure was made. In the model, three different stiffnesses and three different valucs
for the damping characteristics of the mounts are applied. The purpose of the study is to show that with the presented
updating technique the different stiffnesses and the different damping values converge to respectively one single
stiffness value and one single damping value, i.e. the actual stiffness and damping value of the mounts in the axial
direction.

Figure 4 shows the finite element model. The model consists of 57 degrees of freedom (translation in z-direction
and rotation about x- and y-axis in 19 nodes). For the triangle, shell elements were used and for the mounts uniaxial
spring-damper elements. For the description of the damping behaviour, two different approaches are tried out. A first
model describes the mounts as viscous dampers. A second model uses a structural damping approach for the mounts.
For the viscous mounts, following element matrix was used:
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where:
¢ : axial viscous damping value of the mount,

k : axial stiffness of the mount.

The structural damping mounts use following element matrix:
(1+jn) k0 (10)
+
Jn 0k

where:

1 : structural damping factor.
Table 2 shows the original values of the stiffness and damping parameters applied in the finite element model.

These stiffness and damping parameters are selected as the updating parameters in the model updating process. This
procedure aims at the identification of their actual value. In order to be physically meaningful, they should converge
to one value for the stiffnesses and one value for the damping parameters.

Model updating.

Since the experimental data consists of only four degrees of freedom, a reduction of the analytical model is
necessary. The mixed static dynamic reduction technique, discussed above, is used. The rotational degrees of
freedom (38 out of 57 degrees of freedom) were chosen as statically deleted degrees of freedom. The active degrees
of freedom are by definition the four degrees of freedom that correspond to the measured degrees of freedom
(translation in z-direction of point 1, 2, 3 and 4). All other translational degrees of freedom (15 out of 19 not
statically deleted degrees of freedom) are the dynamically deleted degrees of freedom.

Figure 5 and 6 show superimposed the analytical receplances al the active degrees of freedom.

The updating frequencies arc sclected as indicated in figure 7. An equal distribution of nine updating frequencies
in the range from 40 to 80 Hz was chosen.



Ten updating iterations are run for both models.

Figures 8 and 9 show the updated receptances for the viscous damping model. They coincide quitc well with the
experimental receptances. Figure 10 gives the convergence of the updating parameters. The stiffnesses converge to
about 2.4 106 N/m. The viscous damping parameters converge to about 100 Ns/m. Although the three damping
parameters and the three stiffness parameters are not perfectly identical, the differences are acceptably small. The
obtained damping and stiffness characteristics of the mounts can be further used with reasonable confidence.

For the structural damping model, the results (figure 11 to 13) are even better. The experimental and analytical
receptances coincide almost perfectly. Structural damping shows to be a slightly more appropriate damping approach
than viscous damping for the description of the axial damping behaviour of the mounts. The stiffness parameters
converge (o the same value that was found with the viscous model: about 2.4 106 N/m. The structural damping
parameters converge to about 0.17. Again, the differences are acceptably small and the obtained parameters can be
used with reasonable confidence.

Conclusion.

This section showed a succesful application of the RADSER updating technique for the identification of localised
damping parameters. The axial stiffness and damping characteristics of rubber mounts werc determined through FRF
measurements in a selective configuration. Both viscous damping and structural damping were used. The structural
damping approach shows to be somewhat more appropriate for the rubber mounts. Both damping approaches
generate more than appropriate results.

However simple, this case study showed that the RADSER updating technique is valid for the identification of
damping parameters when an accurate and manageable damping approach is provided.

MODEL UPDATING OF A VOLVO 480 SUBFRAME.

The subject of this case study is a subframe of a Volvo 480 automobile. Figure 14 shows the subframe in a set up
for an experimental modal analysis test. In a Volvo 480, the subframe supports the engine, the steering house and the
lower front wheel carriers. The subframe is connected to the car body via rubber mounts in its four corner points.
The purpose of this case study is the updating of a highly idealised finite element model of the subframe with the
RADSER model updating technique.

In the development of a finite element model, there is always the trade-off between accuracy and computation
cost. Fine meshes of elements generally generate more accurate results than coarse meshes. Coarse meshes need a
high degree of idealisation. They can only be used for a global, general prediction of the behaviour of the structure.
The use of coarse meshes, however, drastically reduces the computation cost. For components of larger structures,
like for instance the Volvo 480 subframe, a rough dynamic prediction is in most cases sufficient, as long as the
prediction is reasonably reliable. Fine and detailed finite element models are often too expensive for this purpose.
This case study shows the use of the RADSER model updating technique for the verification and correction of a very
coarse finite element model of the Volvo 480 subframe. The aim is to obtain a cheap, i.e. with a low number of
degrees of freedom, but reliable finite element model.

This section first discusses the acquisition of the experimental FRF's. Next, it describes the original finite element
model of the subframe. A correlation study shows the need for model updating. Finally, the updating of the coarse
[inite element model is discussed.

Acquisition of the experimental FRF's.
Figure 14 shows the experimental set up. The subframe is measured in a free-free configuration. Three soft

springs support the structure. Responses are measured triaxially in 37 points with PCB 330A Structcel
accelerometers. Figure 15 shows the measurement geometry. The structure is excited in two locations: point 316 in



the z-direction (figure 16) and point 408 in the (-y)-direction (figure 17). Force cells PCB 208B mcasure the input
forces that are generated by B&K Type 4809 shakers. The frequency range of interest is from 0 to about 300 Hz.
This range covers the lower, global modes. Table 3 shows the used acquisition and signal processing parameters.

Tigure 18 checks the reciprocity. The reciprocity is not perfect. Especially in the ranges before and between the first
four resonance peaks, differences are found. In general, the receptances are rather noisy in the ranges between the
resonance peaks. Close to the resonances, the receptances are believed to be more accurate.

A modal analysis is performed with the measured FRF's. By means of the Least Squares Complex Exponential
(LSCE) technique, implemented in the LMS Cada-X Modal Analysis software (ref. 2), 6 normal modes are identified
in the frequency range of interest. Table 4 gives an overview of the experimental modal parameters.

The identification of the sixth mode is somewhat problematical, since both input points of the FRF measurements are
rather close to a node of the mode shape. As a consequence, hardly any energy was put into this mode during the
measurements. This is reflected by the mode participation factors that are given in table 5. The table shows that also
the fifth mode was excited rather poorly. This mode was almost exclusively excited through input point 316. As a
consequence, the weighted mode complexity of this mode with respect to input point 408 is poor. Table 6 gives the
MAC-values for the experimental mode shapes. From point of view of the MAC-valucs, the experimental modal
model seems to be valid. In the updating process, the experimental mode shapes are not used as reference data. From
the experimental modal model only the resonance frequencies are used. The experimental mode shapes are not used
but to evaluate the correlation between the experimental data and the analytical model via MAC-values. So, for the
fifth and sixth mode shape, these MAC-values must be interpreted with some reserve.

Together with the resonance frequencies, the measured receptances arc the reference data for the model updating
process. Two sets of 111 receptances (37 response points, triaxial, 2 inputs) are available, In spite of some noisy
ranges, the accuracy of the receptances is acceptable. The first four modes are well covered by these receptances.
The fifth and a fortiori the sixth mode are not too well represented in the measured receptances.

Finite element model.

A very coarse finite element model of the subframe is developed with MSC/NASTRAN (ref. 3) The measurement
geometry (figure 15) is the base for the model. Almost all nodes of the model coincide with an experimental
measurement point. Figure 19 shows the model. All elements are CBEAM elements. The CBEAM element is a more
or less appropriate element for most of the structure.

The quadrangles 303-304-316-305 and 403-404-416-405 and the triangles 305-306-314, 405-406-414, 308-309-315
and 408-409-415 however are not beam like structures. For these parts, the use of beam elements is not more than an
approximate mathematical description of the dynamic behaviour. A sort of shell element seems to be more
appropriate at the first sight. However, a fine mesh of shell elements would be necessary to model! these parts in a
decent way. Beam elements are defined by much more parameters than shell elements. In that way they are, purely
mathematically, more flexible to be fitted in a prescribed hehaviour. That is why beam elements were chosen instead
of shell elements. For an equal number of degrees of freedom, they offer more flexibility in the updating process.
The triangles 305-306-314, 405-406-414, 308-309-315 and 408-409-415 are not very important for the global
behaviour of the subframe in the configuration of the experimental test. The quadrangles 303-304-316-305 and 403-
404-416-405 on the contrary are important for the global dynamic behaviour. Moreover, point 316 is the reference in
the first set of experimental receptances. The mathematical description of the 303-304-316-305 quadrangle will thus
influence the updating process in a determinant way. It must be kept in mind that the use of beam elements for the
modelling of these quadrangular and triangular parts is not more than a mathematical trick. For these elements, no
physical interpretation must be given to the parameters that will be set by the model updaling process.

The rest of the structure is characterised by a lot of holes, irregular welds and rapidly changing cross sections. A
much finer mesh would be needed to model all details. The values that are applied for propertics like cross sections
or moments of inertia are only an approximate estimate. This model must only be used to predict the dynamic
behaviour of the subframe in a global way.



The analytical resonance frequencies are shown in table 7.
Correlation.

The finite element model is coarse and the applied element properties are rough estimates. This model cannot be
expected to correlate closely with the experimental data.

Table 7 evaluates the correlation by means of resonance frequency differences and MAC-values. All analytical
resonance frequencics are too high. Since the difference between the analytical global mass (12.4 kg) and the real
mass of the subframe (12.1 kg) is sufficiently small, the structure was modelled too stiff. The MAC-values are
reasonably good for such a coarse model. MAC-values above 80% are acceptable. MAC-values above 90% are
good. In order to have a reliable model, the resonance frequency differences should be less than 5% and MAC-
values should exceed 80%. It does not make sense to require smaller resonance frequency differences or higher
MAC-values, because the experimental resonance frequencies and mode shapes are not absolutely accurate.

Figure 20 and 21 show typical superimposed experimental and analytical receptances. The correspondence between
the experimental and analytical receptances is obviously too poor.

The conclusion of the correlation study is that the finite element model of the subframe must be corrected.
Selection of updating parameters.

58 updating parameters are selected. The updating parameters are all geometric parameters that describe the
stiffness and mass distribution over the structure (for instance cross area sections and area moments of inertia). The
symmetry of the structure is respected.

Correction of the model.

The minimisation of the indirect receptance difference (RADSER updating method) can be combined with the
minimisation of other residues. For the updating of the finite element model of the VOLVO subframe, a combination
of the indirect receptance difference with the resonance frequency differences was chosen. The experimental
resonance frequencies are a reasonably accurate global measure. The extra computational cost for the minimisation
of the resonance frequency differences is relatively low.

For the minimisation of the indirect receptance difference, updating frequencies must be selected. Figures 22
(reference 316 (+z)) and 23 (reference 408 (-y)) and table 8 give an overview of the selected updating frequencies.
Following considerations led to this selection:

e Information content: The updating frequencies are well distributed over the frequency range of interest. For both
sets of receptances, the number of updating frequencics exceeds the number of modes in the frequency range of
interest. As explained in ref. 1, the quality of the selection can be checked by a singular value decomposition of
the matrix formed by the receptances for all degrees of freedom (column dimension) at all selected updaing
frequencies (row dimension). This matrix is called the reference receptances matrix. Table 8 shows the relative
singular values of the reference receptances matrices for both excitation points. For excitation point 316 (+z),
there is one dominant singular vector, followed by three singular vectors of about equal importance (relative
singular value about 0.2) and again two singular values of about equal importance (relative singular value about
0.1). The rest of the singular vectors are of less importance. This is in agreement with the fact that the frequency
range of interest contains six modes. Obviously, one mode is dominantly present in the reference receptances
matrix (probably the first mode) and two modes are somewhat less clear in this reference set. For reasons of
stability, no updating frequencies were chosen close to the fourth and the sixth mode. These are probably the
modes that are less present in the receptance references matrix. For excitation point 408 (-y), only five relative
singular values of importance are found. It was already mentioned that the fifth mode was hardly excited by this
excitation point. Probably, barely any information about the fifth mode is present in the receptances with 408 (-
y) as reference. Thus ,the reference receptances matrix covers the available information quite well.



¢ Accuracy: All updating frequencies are selected in frequency ranges where the accuracy of the experimental
receptances is believed to be sufficient.

* Damping: The structure exhibits low damping. An undamped finite element model was used. The updating
frequencies are not selected too close to the resonance frequencies where the receptances are relatively more
influenced by damping. .

o  Stability: In ref. 1 it is mentioned that for lowly damped structures, frequencies that possibly coincide with an
analytical resonance frequency during the updating process must be avoided in the selection of updating
frequencies. This is the reason why no updating frequencies are chosen close to the fourth and sixth
experimental resonance peak. The peak of respectively the third and the fifth analytical resonance will pass the
fourth and sixth experimental resonance while they converge to their corresponding experimental resonance.

With these updating frequencies, a first updating iteration is run. This first itcration already yields quite improved
correlation measurcs (table 9) The resonance frequency differences are all less than 4% and the MAC-values
globally improved.

After this first iteration, the restrictions for the updating frequencies concerning the numerical stability of the
updating process are not longer valid. Updating frequencies close to the fourth and sixth experimental resonance can
be selected without the risk of numerical instability. New updating frequencies are chosen in order to improve the
balance of the reference receptance matrices. Figure 24 and 25 and table 10 show the updating frequencies that are
selected with consideration of the accuracy, damping and stability criteria.

For excitation point 316 (+z), the relative singular values do not improve much. For excitation point 408 (-y),
however, the new selection of updating frequencies yields quite some improvement (table 10).

With these updating frequencies, ten updating iterations are run. Table 11 shows the resulting frequency differences
and MAC-values.

All resonance frequency differences are less than 4%. For the first four modes the MAC-values exceed 92%. The
fifth mode has a MAC-value of almost 85%; which still is more than acceptable. The MAC-value of the sixth mode
decreased to 72%. Normally, this MAC-value should exceed 80% to be acceptable. However, the experimental
receptances hardly contained information about this mode. So it could be expected that the updating process focuses
on the improvement of those modes that are best covered by the experimental receptances. Moreover, the sixth
experimental mode shape looks rather noisy. This can, possibly, cause a somewhat lower MAC-value too. Figure 26
and 27 show typical superimposed experimental, original analytical and updated receptances. Much of improvement
can be seen with respett to the original analytical receptances. It is the author's opinion that a better agreement must
not be expected because of the high degree of idealisation of the finite element model and the limited accuracy of the
experimental receptances.

On basis of the modal parameters and the comparison of experimental and analytical receptances, the conclusion is
that the updated finite model is much more reliable than the original model and that it is valid for use in the
frequency range from O to 300 Hz. If this range is limited to the first four modes, the correlalion with the
experimental model is even very good.

Conclusion.

In this case study, the RADSER updating technique was used to correct a very coarse finite element model of a
subframe of a Volvo 480. Starting from not extremely accurate and even somewhal noisy measurements and via
selections of updating parameters and updating frequencies based on simple rules of thumb and common sense, the
updating process gave reliability to a coarse, and thus cheap, finite element model. Although the results of the
updating of such a coarse model must be used with some reserve, this case study showed that the RADSER updating
technique is useful tool in the design of mechanical structures. Coarse finite element models that are normally seen as
unreliable, can be validated by means of an easy to use model updating technique.



SUMMARY.
This paper presented two case studies of FRF based model updating.

In the first application the axial stiffness and damping of rubber mounts was succes{ully identified.

In the second case study, a coarse finite element model of a car subframe was validated.

These succesful applications show the validity of the presented updating technique for the verification and correction

of dynamic finite element models.
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Aquisition parameter

Value or option

Signal type bandlimited noise Mode Frequency | Damp. ratio
Frequency range source 0 Hz to 256 Hz number (Hz) (%)
Length burst 80% ; 17376.42) gi’i
Samp.ling frequency 512 Hz 3 "3 6: 3 0: Y
Filter cu.toff 204 Hz 1 1782 043
Blocksize 4096 3 271.3 0.52
Frequency range processing 0 Hz to 256 Hz 6 291.2 0.33
Numbecr of avcrages 40
Input window uniform Table 4: Overview of experimental modal parameters.
Response window uniform
Measurement function FRF Hv
i || Mode participation factors Weighted mode
Table 1: Aquisition parameters. complexity
ref. ref. both ref. ref.
316: +z | 408: -y | inputs || 316: +z | 408: -y
Stiffnesses Viscous damp. || Structural damp. (%) (%) (%) (%)
(both models) (model 1) (model 2) ] 100.0 140 | 481 100 100
(N/m) (Ns/m) 2 457 | 100.0 | 17.9 100 100
kj 2.50 107 cJ 5 Ny 0.01 3 100.0 53.1 9.1 100 100
ko 3.75 106 c2 10 M2 0.02 4 94.5 100.0 19.9 100 100
k3 5.00 106 c3 1000 n3 0.50 5 100.0 5.4 3.3 100 0
6 64.4 100.0 1.7 100 100
Table 2: Original stiffness and damping parameters. all 64.6 35.4 100.0

Table 5: Mode participation factors and weighted mode

Acquisition parameter

Value or Option

complexity for mode i.

Signal type band Jimited noise
Frequency range source O Hzto512 Hz -
Length burst 60% 2 3 4 > 6
Sampling frequency 1024 Hz 1 {100
Filter cut-off 410 Hz 2126100
Processing parameter Value or Option 31011001100
- 410010040100
Block size 2048
Frequency range processin 0Hzto 512 Hz S 107100115 105|100
duency range p £ 6102106010001 100
Number of averages 40
Input window uniform Tuble 6: MAC '
Response window uniform apte 0. -values (%)
Measurement function FRF Hv

Table 3: Acquisition and signal processing parameters.
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Exp. Exp. Anal. Anal. Freq. MAC- ref. 316 (+z) ref. 408 (-y)
mode | freq, | mode | freq | dff | value fiHy [ o/o, | i) [ o,/0,
1 774 1 95.9 3.9 95.7 1 65.5 1.000 66.5 1.000
T Tie0 T 2 =00 T 103 oA 1 2 69.5 0397 72.5 0.755
3 166.3 3 198.8 19.5 87.2 3 72.5 0.209 82.0 0.637
4 178.2 4 201.5 13.1 62.5 4 82.0 0.140 119.5 0.477
5 271.3 5 299.0 10.2 66.5 5 86.5 0.112 128.0 0.431
6 291.2 6 347.3 19.2 83.6 6 93.5 0.107 131.0 0.221
7 126.0 0.066 140.5 0.046
Table 7: Resonance frequency differences and MAC- 8 131.0 0.027 145.5 0.012
values. 9 140.5 0.013 162.0 0.010
10 141.5 0.008 163.0 0.008
11 160.0 0.007 183.0 0.007
i ref. 316 (+2) ref. 408 (-y) 12 161.0 0.006 190.0 0.005
f,(z) | o,/0, f; (Hz) 0,/0, 13 [ 163.0 0.004 307.5 0.003
1 65.5 1.000 70.5 1.000 14 182.0 0.004 300.5 0.003
2 70.5 0.277 74.0 0.697 15 185.0 0.003
3 72.5 0.209 124.5 0.544 16 190.0 0.003
4 131.0 0.178 131.0 0.290 17 2745 0.002
5 133.0 0.106 133.0 0.118 18 | 276.5 0.002
6 160.0 0.087 163.0 0.026 19 294.0 0.001
7 162.0 0.031 309.5 0.016 20 | 3055 0.001
8 164.0 0.018 3105 0.007 21 3105 0.001
9 263.0 0.008 312.0 0.002
10 267.0 0.004 Table 10: Updating frequencies and relative singular
11 268.0 0.003 values of the reference receptances matrix.
12 308.5 0.002
13 312.0 0.001
Exp. Exp. Anal. Anal. Freq. MAC-
Table 8: Updating frequencies and relative singular mode g?q) mode f;;)q' d;ff. va;ue
values of the reference receptances matrix. 1 7 7.24 ] (7 6Z7) _(10()) 9( Sa;
2 136.0 2 140.9 3.6 92.1
3 166.3 3 170.3 2.4 93.3
Exp. Exp. Anal. Anal, Freq. MAC- 4 1782 4 180.0 1.0 04.5
mode freq. mode freq. diff. value 3 271.3 5 2727 05 84.9
(Hz) (Hz) | (%) (%) 5 291.2 6 3183 | 2.1 72.4
1 77.4 1 744 -3.5 95.5
§ }222 g 122? gi ggg Table 11: Resonance frequency differences and MAC-
4 782 | 4 767 | 08 | 698 values after the updating.
5 271.3 5 264.9 -2.4 67.9
6 291.2 6 284.4 -2.4 84.5

Tuble 9: Resonance frequency differences and MAC-
values.
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Figure 3: Experimental receptances (point 1: full line;
point 2: dash-dot line; point 3: dashed line; point 4.
dotted line).

Figure 4: Finite element model.
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Figure 2: Experimental set up.
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Figure 5: Superimposed analytical receptances for the
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Figure 7: Experimental receptance (full line) and
analytical (viscous damping) receptance (dashed line)
for response at the center of the triangle and the

updating frequencies (X).
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Figure 8: Real part of the experimental (full line), the
original analytical (dash-dot line) and the updated
analytical receptances (dashed line) for the viscous

damping model.
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Figure 9: Imaginary part of the experimental (full line),
the original analytical (dash-dot line) and the updated
analytical receptances (dashed lineJfor the viscous

damping model.
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Figure 10: Convergence of the damping and stiffness
parameters for the viscous damping model (mount a:
full line; mount b: dashed line; mount c: dash-dot line).
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Figure 11: Real part of the experimental (full line), the
original analytical (dash-dot line) and the updated
analytical receptances (dashed line) for the structural
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Figure 12: Imaginary part of the experimental (full
line), the original analytical (dash-dot line) and the
updated analytical receptances (dashed line)for the

structural damping model.
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Figure 13: Convergence of the damping and stiffness
parameters for the structural damping model (mount a:
full line; mount b: dashed line; mount c: dash-dot line).
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Figure 15: Measurement geometry.

Figure 14: The subframe in the set up for the experimental modal analysis test.
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Figure 16: First excitation point.

Figure 17: Second excitation point.
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Figure 18: Reciprocity check. Full line: receptance;
input: 316 (z); response: 408 (-y). Dashed line:
receptance; input: 408 (-y); response: 316 (z)

Figure 19:

Finite element model of the subframe with
node numbers.
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Figure 20: Experimental (full line) and analytical
(dashed line) receptance; reference 316(+z), response
101(+z).
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Figure 21: Experimental (full line) and analytical
(dashed line) receptance; reference 408(-y), response
101(+y).
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Figure 22: Sum of absolute values of the experimental Figure 24: Sum of absolute values of the experimental
(full line) and analytical (dashed line) receptances for (full line) and analytical (dashed line) receptances for
ref.: 316 (+z), with the updating frequencies (X). ref.: 316 (+z), with the second selection of updating

frequencies (X).
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Figure 23: Sum of absolute values of the experimental
(full line) and analytical (dashed line) receptances for Figure 25: Sum of absolute values of the experimental
ref.: 408 (-y), with the updating frequencies (x). (full line) and analytical (dashed line) receptances for
ref.: 408 (-y), with the second selection of updating
frequencies (X).
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Figure 26: Experimental (full line) and analytical
(dashed line) receptance; reference 316(+z), response
101(+z).
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Figure 27: Experimental (full line) and analytical
(dashed line) receptance; reference 408(-y), response
101{+y).
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