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ABSTRACT

During the design of large, complex space structures, the structural analyst needs to understand the
sensitivity of transient load predictions to uncertainties in critical structural vibration modes and
forcing inputs.  These questions arise both early in the design cycle, when models are simple and
unrefined, and in the later stages of design, when models can be very complex and expensive to
analyze.  Therefore, the need for rapid, inexpensive assessment of these sensitivities exists at all
design stages.  Large, complex space structures such as International Space Station (ISS) are
expensive to analyze with traditional sensitivity methods because of the tremendous number of
design variables and analysis degrees of freedom.  A rapid, inexpensive model sensitivity analysis
method has been developed that uses modal information from a baseline model analyzed with
MSC/NASTRAN Normal Modes Analysis.  The method develops the system transfer function,
and randomly alters the frequency and mode shape parameters of selected structural modes in the
frequency domain to produce new, altered models.  These new models are then used to calculate
variations in transient response to known forcing inputs.  The method produces approximate
sensitivity information rapidly and inexpensively and can be used to assess designs at any time in
the design cycle.  It has been used to study ISS structural interface load sensitivities to dynamic
model uncertainties.  The method is presented with simple examples to illustrate its use.
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INTRODUCTION

As space structures become larger and more complex, the task of creating accurate structural
models becomes increasingly difficult.  The International Space Station (ISS), a joint project of the
United States, Russia, Japan, Canada, and the European Space Agency, is the largest and most
complex space structure ever engineered.  The physical structure contains many different types and
shapes of interfaces and structural elements [1], and affords numerous opportunities for modelling
errors and uncertainties.  Variations in machining, materials, or connections, while producing
small errors on smaller structures, can combine to produce significant overall errors in modelling
for large structures.  These errors in modelling can produce large variations in the modal properties
of the models, which will produce large and possibly unacceptable variations in structural loads.
Understanding the sensitivity of the predicted structural loads to both modelling uncertainties and
force inputs is important to ensure proper specification of design-to loads and to develop an
adequate dynamic model validation plan [2].

Typically, large, complex space structures have many degrees of freedom and contain nonlinear
components.  The unreduced ISS model contains nearly 2 million degrees of freedom, and also
contains many nonlinear deployable structures.  The large size of the problem coupled with the
numerous design parameter variations that could occur create a daunting sensitivity analysis task
that would be very time consuming.  Further complicating sensitivity analysis, superelement and
linearization techniques are often employed to reduce model complexity for modal and transient
analyses [1, 3].  These reduction techniques erase the design parameters from the structural model
and eliminate the possibility of using traditional sensitivity analyses which are based on varying
physical properties and dimensions [4].

A model sensitivity analysis method was developed that uses modal frequencies, eigenvectors, and
modal output transformation matrices (OTM) from MSC/NASTRAN (v. 68.0) Normal Models
Analysis (Solution 103) [5].  The method generates a baseline modal model in the frequency
domain, and alters the frequencies and mode shapes of critical structural response modes according
to user defined probable variations to create new models of the structure.  Assuming a well
described forcing input, the method then compares the response of the new, altered models with
the baseline model to determine model sensitivity.  The method is simple, fast, and efficient, and
effectively addresses the potential combined contributions of many design parameter variations.
This method is illustrated with a concept example and an application example.

SOLUTION APPROACH

The basic goal of sensitivity analysis is to determine the effect of design parameter variations or
modelling uncertainties on dynamic characteristics and structural responses [4].  Typically, design
parameters are chosen and variation coefficients are computed for structural element loads or modal
properties.  However, when both the number of design parameters and the number of degrees of
freedom are large, this process becomes very time consuming and expensive.

Another way to approach this problem is to examine the overall effect of design parameter
variations.  Experience in modal test/model correlation tells us two important items:  1) modal
frequency uncertainties of ±20% are reasonable, and 2) mode amplitude uncertainties of ±50% are
reasonable.  These variations in mode frequency and amplitude represent the cumulative effect of
modelling errors due to all design parameter variations.  If we concentrate on varying these two
modal parameters for a small number of structural modes, the problem becomes less daunting.
Also, if we are dealing with large structures, we are more interested in the cumulative effect of
design parameter variations and modelling assumptions than the individual effects.  Therefore this
approach is intuitive based on engineering judgment and experience.
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The modal transfer function approach allows use of this modal parameter variation directly.  We
may derive the system transfer function equation by beginning with the modal equation of motion
[3].  Assuming a stepped sine excitation, single input/mulit output, zero initial conditions, equal
damping on all modes, and mass normalized eigenvectors we have:

««η{ } + 2ζ ω[ ] «η{ } + ω2[ ] η{ } = φ[ ]T
p{ } F(t) (1)

where:
{η} = mode displacement vector

ζ = damping ratio

[ω] = matrix of circular natural frequencies

[φ] = eigenvector matrix
{p} = force application vector
F(t) = harmonic input disturbance

The above matrix equation describes a set of uncoupled modal equations, each of which can be
considered as a single degree of freedom system:

««ηr + 2ζωr
«ηr + ωr

2ηr = qrF(t) (2)

where:
qr = multiplication of the rth row of [φ]T and the force application
        vector {p}

The Laplace transformation of this equation yields:

s2ηr (s)+ 2ζωrsηr (s)+ ωr
2ηr (s)= qrF(s) (3)

Rearranging:

ηr (s)
F(s)

= qr

s2 + 2ζωrs+ ωr
2

(4)

For harmonic excitation, "jΩ" is substituted for the complex operator "s" to obtain:

ηr (Ω)
F(Ω)

= qr

−Ω2 + j2ζωrΩ + ωr
2 =

qr

ωr
2

1− Ω
ωr







2

+ j2ζ Ω
ωr (5)

By separating qr from the remaining terms we recognize the complex frequency response function
(CFRF) [6] for a single degree of freedom system.  Equation (5) then becomes:
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ηr (Ω)
F(Ω)

= Hr (Ω,ωr )qr

(6)

Equation (6) represents the generalized displacement transfer function for the rth mode of the
multiple degree of freedom system.  To relate this generalized response to physical response we
will use the mode displacement recovery method:

e(t){ } = LTM[ ] φ[ ] η(t){ } (7)

where:
{e(t)} = element response
[LTM] = transformation matrix from physical displacement
               to element load

We may multiply [LTM] and [φ] and call this the output transformation matrix, [OTM].  If we

perform the Laplace transform on (7), replace the complex operator "s" with "jΩ", and divide

through by F(Ω) , we obtain:

e(Ω)
F(Ω)









= OTM[ ] η(Ω)
F(Ω)







 (8)

Combining (8) with the generalized displacement transfer function for all modes of the system, and
expanding to include all basic modal terms, we have:

e(Ω)
F(Ω)









= OTM[ ] H(Ω,ωr )[ ] φ[ ]T
p{ }

(9)

Thus we may calculate the system transfer function from the modal frequencies, the mode shape
vector, and the output transformation matrix of the system.  All these parameters are readily
available as output from a MSC/NASTRAN Normal Modes Analysis.

We may rearrange (9) to take advantage of the superposition of the individual mode CFRFs in the
total system transfer function.  Multiplying the CFRF matrix, the transposed eigenvector matrix,
and the force application vector, we obtain:

  

H(Ω,ωr )[ ] φ[ ]T
p{ } =

q1H(Ω,ω1)

q2H(Ω,ω2)

q3H(Ω,ω3)

M

qrH(Ω,ωr )

























 (10)
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We may then rewrite (9) as the product of a coefficient matrix and a column vector of the CFRFs:

  

e(Ω)
F(Ω)









=

OTM11q1 OTM12q2 OTM13q3 K OTM1rqr

OTM21q1 OTM22q2 OTM23q3 K OTM2rqr

OTM31q1 OTM32q2 OTM33q3 K OTM3rqr

M M M O M

OTMe1q1 OTMe2q2 OTMe3q3 K OTMerqr























C[ ]
1 24444444444 34444444444

H(Ω,ω1)

H(Ω,ω2)

H(Ω,ω3)

M

H(Ω,ωr )



























(11)

We can see that the system transfer function is a weighted linear combination of the CFRFs.  We
can therefore vary the terms in [C] and the CFRF frequencies to create new, altered models.  Of
course, the changes in these variables should remain within defined limits set by experience and
engineering judgment.  The new, altered models are intended to represent the overall effects of
changes between an input forcing point and an output structural response point.

Once the altered models are created, their response to an input forcing function can be evaluated in
the frequency domain.  A Fast Fourier Transform (FFT) is performed on the desired transient input
forcing function, and the product of the system transfer function and the forcing function is
calculated to obtain the frequency domain result.

e(Ω) = G(Ω)F(Ω) (12)

An Inverse Fast Fourier Transform (IFFT) is performed on this result, and the transient domain
result is compared with the transient result from the baseline model.  This procedure executes very
rapidly, and thousands of results can be generated within several hours on even a moderate speed
computer.  Once the results are generated, statistical analysis may be performed to assess the
effects of model variations on element loads.

CONCEPT EXAMPLE

Consider a simple truss example to illustrate the method's ability to create new frequency domain
models that accurately predict the behavior of physically altered models.  In this example we will
approximate a known transfer function by altering the coefficient matix of equation (11), and will
compare the response from the frequency domain approach with response from a transient
analysis.  Figure 1 presents a process diagram of this example, and the following paragraphs
illustrate the process.

A free-free truss was created as shown in Figure 2 and called the baseline model.  All members
were modelled as CBAR elements [5] with initial properties shown in Table 1.  A normal modes
analysis was performed on the model, and the modal frequencies are shown in Table 2.  The
results of the normal modes analysis were used in the modal transient and transfer function
analyses.  In the modal transient analysis, the truss was excited at grid 1 in the Y-direction, and the
Z-bending response of CBAR 504 was recovered.  Figures 3 and 4 show the excitation forces
applied at grid 1.  The first excitation, DECSINE, was composed of two superimposed sine waves
of 0.5 Hz and 1.0 Hz that exponentially decay over time.  The second excitation, SQUARE, is a
simple square pulse with a four second duration.  The sensitivity program used the baseline normal
modes analysis information to also generate a response result.  Figures 5 and 6 show the bending
response of CBAR 504 to both excitations, both with the modal transient solution and the transfer
function based frequency domain solution.  The frequency domain solution matches the modal
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transient very well at initial excitation and through the peak response.  Tables 3 and 4 list the top
ten modal contributions for each excitation.

To generate an altered model, the radii of all CBAR elements in bay 4 of the baseline truss were
arbitrarily reduced by 20%.  Table 5 lists the new CBAR element properties in bay 4.  A normal
modes analysis was performed on this physically altered model, and the results were used to
perform a transfer function analysis.  Table 6 lists a comparison between the first 25 modes of the
baseline model and the altered model.  Mode shapes were checked to ensure a direct comparison
between the modes of the two models.  The changes to the baseline model produced moderate
changes in the dynamic properties.  Frequencies changed by a maximum of 10%, and transfer
function peaks changed by 30% for more critical modes, and as much as 70% for less critical
modes.

Using the same input forcing functions, the physically altered model was analyzed with the modal
transient solution to calculate the true altered model response.  The sensitivity program was used to
generate the comparison response using the baseline modal data and the calculated mode frequency
and amplitude percent differences in Table 6.  The baseline transfer function was altered by
changing the coefficient matrix and frequencies of the CFRFs for the top ten modes listed in Tables
3 and 4 for the respective input forcing functions.  A comparison of the results of both solutions
for both inputs is shown in Figures 7 and 8.  Again, the two solution methods match very well at
initial excitation and through the peak response.  Table 7 shows that the percent difference between
the frequency domain solution and modal transient solution maximum and minimum response
peaks is less than 10%.  Therefore, this method can be used to form altered models that accurately
predict transient load variations.

APPLICATION EXAMPLE

In sensitivity analysis of large, complex space structures, we are interested in the effects of many
modelling uncertainties throughout the structure.  These modelling uncertainties are assumed to be
random in nature and may combine to significantly change the modal properties of the structure,
which may in turn significantly change structural loads predictions.  The above concept may be
employed to produce loads results for altered models, and these results may be statistically
analyzed to determine load sensitivity to model uncertainties prior to test/model correlation.  Figure
9 illustrates the procedure used in practical application of this concept.  To demonstrate the
accuracy and speed of this procedure, the simple truss in Figure 2 was analyzed both in a brute
force analysis (modal and transient analysis of each model variation) and with the sensitivity
analysis procedure, and results from the two analyses were compared.

    Brute Force Analysis
Fifty physically altered models of the simple truss were created by independently, randomly
varying the radii of all the CBAR elements.  These radii were randomly varied according to a
normal distribution with zero mean (µ) and 10% standard deviation (σ).  The modal properties of
the physically altered models were calculated in a normal modes analysis.  The input forcing
function DECSINE was applied to the physically altered models as in the concept example, and
transient loads were calculated for CBAR 504.  Histograms of these results are presented in
Figures 10-12 in comparison with the sensitivity analysis results.  The analysis was
computationally intensive because a new eigensolution and transient response solution was
calculated for each new model.

    Sensitivity Analysis
As shown in Figure 9, the inputs to the sensitivity program are the baseline modal properties, the
baseline transient results and important response modes, the frequency domain transformed forcing
function, and the mode frequency and amplitude variation parameters.  The baseline modal
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properties were calculated for the baseline model in a normal modes analysis.  The input forcing
function DECSINE was applied to the baseline model as in the concept example, and the transient
results of CBAR 504 were recovered.  The important response modes were calculated in a modal
contribution analysis of these transient results.  The frequency domain transformed forcing
function was calculated by applying an FFT to the input forcing function DECSINE.  To develop
the modal frequency and amplitude variations for this example, the altered eigenvectors from the
brute force analysis were compared with the baseline model to ensure a direct comparison of
transfer functions.  Transfer functions were then generated for each model and were compared
with the baseline model transfer function to determine mode frequency and magnitude variation.
The sample statistical frequency and magnitude variations of the important response modes were
calculated as µ=0 and σ=3 Hz, and µ=0 and σ=31, respectively, and these parameter variations
were used in the sensitivity analysis.  The parameter variations were approximately normally
distributed.

In the sensitivity analysis, 1000 samples of loads were calculated for the bending, shear, and
torsion of CBAR 504 by randomly varying the mode frequency and amplitude on the critical
modes listed in Table 3 according to a normal distribution with µ and σ as listed above.
Histograms of the results of this sensitivity analysis are shown in Figures 10-12 in comparison
with the brute force analysis results.  We can see that for all three responses, the distribution of
loads is very similar.  The sensitivity analysis was conducted in approximately 3% of the time
needed for the brute force analysis, and produced 950 more results cases than the brute force
analysis.

The main question the user faces in the above procedure is how to define and use the mode
frequency and amplitude variation parameters in the sensitivity program.  In this example, the
variation limits were determined statistically from the brute force example to achieve a good results
comparison.  However, in most cases engineering judgment must be used to determine a
reasonable range of variation.  As stated earlier, test/model correlation experience tells us that
modal frequency variations of ±20% are reasonable, and mode amplitude variations of ±50% are
reasonable.  These can provide adequate boundaries in most analyses to investigate dynamic load
sensitivities to model uncertainties prior to test/model correlation.

CONCLUSIONS

An accurate and computationally efficient procedure for approximate dynamic model sensitivity
analysis of large, complex space structures has been presented.  The procedure utilizes modal data
from a MSC/NASTRAN Normal Modes Analysis and generates altered system transfer functions
for use in predicting structural loads sensitivity to model changes and modelling uncertainties.  A
concept example and an application example were presented to demonstrate the accuracy and
feasibility of the method.

By varying the modal frequency and amplitude of a baseline transfer function to approximate a
known, altered transfer function, accurate transient results were produced for two different types
of force input using this frequency domain approach.  A comparison of the peak results from the
transient and frequency domain analyses yielded a difference of less than 10%.

Random variation of modal frequency and amplitude of baseline transfer functions allowed rapid
generation of altered models and rapid analysis of structural loads sensitivity.  This data may be
produced at any point in the design cycle, and is useful in both design evaluation and structural
model validation planning.  Cost of generating this data is low even for large models possessing
millions of degrees of freedom.
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.Figure 2:  Simple 9-Bay Truss
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Table 1:  CBAR and Material Properties for Baseline Truss

Parameter Value
Area, in2 0.00785

I1, in4 4.91E-06

I2, in4 4.91E-06

J, in4 9.82E-06

Young's Modulus, lb/in2 29.5E+06

Shear Modulus, lb/in2 11.5E+06
Poisson's ratio 0.287
Density, lb/in3 0.283

Table 2:  First 25 Free-Free Modal Frequencies for Baseline Truss

Mode Number Frequency (Hz) Description
1 3.14E-07 Rigid Body Mode
2 4.33E-07 Rigid Body Mode
3 5.12E-07 Rigid Body Mode
4 4.51E-05 Rigid Body Mode
5 5.31E-05 Rigid Body Mode
6 9.07E-05 Rigid Body Mode
7 2.65E-01 1st Bending (Z)
8 7.18E-01 2nd Bending (Z)
9 8.01E-01 1st Torsion (X)
10 1.38E+00 3rd Bending (Z)
11 1.61E+00 2nd Torsion (X)
12 2.24E+00 4th Bending (Z)
13 2.42E+00 3rd Torsion (X)
14 3.25E+00 4th Torsion (X)
15 3.26E+00 5th Bending (Z)
16 4.07E+00 5th Torsion (X)
17 4.38E+00 6th Bending (Z)
18 4.92E+00 6th Torsion (X)
19 5.45E+00 High Order Bending (Z)/Torsion (X)
20 5.78E+00 High Order Bending (Z)/Torsion (X)
21 6.31E+00 High Order Bending (Z)/Torsion (X)
22 6.52E+00 High Order Bending (Z)/Torsion (X)
23 6.92E+00 High Order Bending (Z)/Torsion (X)
24 9.65E+01 1st Bending (Y)
25 2.03E+02 2nd Bending (Y)
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Figure 3:  Exponentially decaying 0.5 Hz and 1.0 Hz sine wave input - DECSINE
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Figure 5:  Baseline Truss CBAR 504 Response to DECSINE Input
(Modal Transient and Frequency Domain Solutions)

Table 3:  Top Ten Modal Contributions for DECSINE Input

Mode Number Frequency (Hz) Contribution Percent
7 0.26535 809.37 47.01
10 1.38155 670.85 38.97
9 0.80066 163.86 9.52
13 2.42261 137.17 7.97
15 3.25903 -118.70 -6.89
8 0.71782 117.02 6.80
12 2.23817 -105.42 -6.12
17 4.37801 93.61 5.44
16 4.07432 -76.61 -4.45
19 5.45210 68.29 3.97

TOTAL 1759.43 102.20
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Figure 6:  Baseline Truss CBAR 504 Response to SQUARE Input
(Modal Transient and Frequency Domain Solutions)

Table 4:  Top Ten Modal Contributions for SQUARE Input

Mode Number Frequency (Hz) Contribution Percent
7 0.26535 1954.29 90.47
9 0.80066 206.81 9.57
10 1.38155 -141.59 -6.55
12 2.23817 135.20 6.26
16 4.07432 85.52 3.96
8 0.71782 -80.95 -3.75
15 3.25903 63.89 2.96
11 1.60725 46.99 2.18
19 5.45210 -34.04 -1.58
14 3.24500 -31.17 -1.44

TOTAL 2204.95 102.07
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Table 5:  Altered CBAR and Material Properties for Bay 4 of Truss

Parameter Value
Area, in2 0.00503

I1, in4 2.01E-06

I2, in4 2.01E-06

J, in4 4.02E-06

Young's Modulus, lb/in2 29.5E+06

Shear Modulus, lb/in2 11.5E+06
Poisson's ratio 0.287
Density, lb/in3 0.283

Table 6:  Comparison of First 25 Free-Free Modal Frequencies

Mode
Number

Baseline
Frequency

(Hz)

Altered
Frequency

(Hz)

%
Difference

Baseline
System TF

Peak

Altered
System TF

Peak

%
Difference

1 3.14E-07 4.44E-07 n/a n/a n/a n/a
2 4.33E-07 4.45E-07 n/a n/a n/a n/a
3 5.12E-07 4.95E-07 n/a n/a n/a n/a
4 4.51E-05 5.74E-05 n/a n/a n/a n/a
5 5.31E-05 6.20E-05 n/a n/a n/a n/a
6 9.07E-05 8.30E-05 n/a n/a n/a n/a
7 2.65E-01 2.37E-01 -10.41 -521.78 -542.46 3.96
8 7.18E-01 6.85E-01 -4.60 81.80 99.63 21.80
9 8.01E-01 7.26E-01 -9.40 -82.95 -111.62 34.56
10 1.38E+00 1.36E+00 -1.21 79.60 82.91 4.16
11 1.61E+00 1.60E+00 -0.86 -13.51 -14.16 4.81
12 2.24E+00 2.14E+00 -4.39 -41.49 -46.73 12.63
13 2.42E+00 2.37E+00 -1.88 37.99 43.59 14.74
14 3.25E+00 3.12E+00 -4.10 -9.32 -2.79 -70.06
15 3.26E+00 3.16E+00 -3.02 -16.61 -26.76 61.11
16 4.07E+00 4.06E+00 -0.23 -26.56 -24.46 -7.91
17 4.38E+00 4.28E+00 -2.35 24.35 24.72 1.52
18 4.92E+00 4.72E+00 -4.04 -15.50 -7.40 -52.26
19 5.45E+00 5.27E+00 -3.35 21.03 14.87 -29.29
20 5.78E+00 5.64E+00 -2.50 - - -
21 6.31E+00 6.10E+00 -3.40 - - -
22 6.52E+00 6.29E+00 -3.47 - - -
23 6.92E+00 6.69E+00 -3.37 - - -
24 9.65E+01 9.38E+01 -2.75 - - -
25 2.03E+02 1.98E+02 -2.47 - - -
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Figure 7:  Altered Truss CBAR 504 Response to DECSINE Input
(Modal Transient and Frequency Domain Solutions)
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Table 7:  Comparison of Peak Results for Solution Methods on Altered Model

Maximum
Response %
Difference

Minimum
Response %
Difference

DECSINE
Input

-4.50 -2.33

SQUARE
Input

1.73 -7.48
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SENSITIVITY PROGRAM

•  Generate Baseline Transfer Function Data
•  Generate Baseline Frequency Domain Response for Input
    Forcing Function, Perform IFFT
•  Alter Top Ten Response Modes According to User Defined
    Criteria, Generate Altered Transfer Function
•  Generate Altered Frequency Domain Response for Input
    Forcing Function, Perform IFFT, Compare to Baseline
•  Repeat Alterations If Desired
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Operation
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Figure 9:  Flow Diagram for Application Example
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CBAR 504 Bending Moment (in-lbs)
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Figure 10:  CBAR 504 Bending Moment Comparison Histograms from
Sensitivity Analysis and Brute Force Analysis

CBAR 504 Shear (lbs)
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Figure 11:  CBAR 504 Shear Comparison Histograms from
Sensitivity Analysis and Brute Force Analysis
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CBAR 504 Torsion (in-lbs)

N
o

rm
a

li
ze

d
 

O
c

c
u

rr
e

n
c

e

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 1000 2000 3000 4000

Sensitivity
Analysis

Brute Force
Analysis

Figure 12:  CBAR 504 Torsion Comparison Histograms from
Sensitivity Analysis and Brute Force Analysis


