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Abstract.

This paper uses two measures for stability when studying aeroelastic behaviour in
problems which require Non-linear fluid mechanics modelling for the solution. One
measure is defined for static stability and the other for dynamic stability.  The
simulation performed on the fluid-structure interaction of a 2D ellipse in a sub critical
Reynolds number flow field is shown in this paper.

Introduction:

Since the initial introduction of the
scientific field of aeroelasticity, the
aerodynamic models used have
either been based on experiments or
on linear theories. During the last
decade numerical methods for
solving increasingly sophisticated
fluid dynamic models have been
developed world-wide to improve the
predictions of unsteady
aerodynamics in problems containing
separated flow and/or transonic flow
etc. The present state of art in
aeroelasticity for simulation of flow of
these categories is the use of full
potential equation solvers and Euler
equation solvers. The solution of
Navier-Stokes equations with
numerical methods such as the Finite
Volume or Finite Element method
adds an additional complication,
namely time dependent nodal
locations in the flow domain due to
structural motion. The major
drawback with having to introduce a
dynamic mesh algorithm is the
additional computer requirements for
solving the equation system. The
memory and CPU requirement for the
solution of a 3D flow case is
presently expensive even with a
static mesh.

The definition of the field of
aeroelasticity can be visualized
through forming a triangle of
disciplines, as was first done by
Collar several years ago.

     Inertial forces(Dynamics)

Aerodynamic forces
(Fluid mechanics)

Elastic forces
(Solid mechanics)

Aeroelasticity covers phenomena
which involves significant mutual
interaction among inertial, elastic and
aerodynamic forces.

Although the technology around
aeroelasticity has been growing from
and developing in the area of
aeronautical applications, applications
are found at an increasing rate in
other disciplines of engineering such
as civil engineering (flow about
bridges and tall buildings), mechanical
engineering (flow around



turbomachinery blades and fluid flow
in flexible pipes) and nuclear
engineering (flow about fuel elements
and heat exchanger vanes). The
number of applications will with high
probability increase in both absolute
and relative numbers as the
technological development in these
and other areas demand lighter
weight structures under more severe
flow conditions.

The present state of the art in terms of
tools used for predicting aeroelastic
characteristics of systems in the area
of fluid mechanics is the use of linear
small perturbation theory for the
modelling of the unsteady
aerodynamics. During the last decade
full potential and Euler approximation
programs have also been developed
for prediction of unsteady
aerodynamic for transonic and
supersonic flow cases.

The computer hardware and software
performance have been increasing to
a state where software starts to
appear that makes it possible to study
aeroelastic phenomena where full
Navier-Stokes equations has to be
used for simulation of the unsteady
aerodynamics.

This paper presents the principals
behind a tool that is under
development for the prediction of
static and dynamic aeroelastic
characteristics with a non-linear
unsteady fluid mechanics model.

2. MODEL DESCRIPTION

2.1 Fluid and structural modeling:

The MSC/PATRAN pre-processor was
used for modeling of both the
structural and fluid finite element
models. The interface between the
MSC/PATRAN program and the
developed software was written as

subroutines reading from a
MSC/PATRAN model file.

MSC/PATRAN was used for the
results post-processing by creating a
results file from the code that
MSC/PATRAN reads. Both steady
state and transient post-processing
was performed.

2.2 Aeroelastic equations:

When developing a method for
studies of fluid-structure  interaction
phenomena the tool has to solve the
complete equation of motion for the
system, either through direct
integration in the time domain or
through some approximate method.
The equation of motion may be
written as

M u C u K u F t&& & ( )+ + =       (1).

Where

M - Mass matrix.

C - Damping matrix.

K - Structural
stiffness matrix.

 &&u - Acceleration 
vector.

 &u - Velocity vector.

 u - Displacement 
vector.

F t( ) - Time dependent 
load vector.

Equation (1) is generally non-linear
and is sufficient for the solution of
problems such as determining stalled
and unstalled flutter speeds, forced
response analysis and steady-state
deflection calculations.
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In the case of static stability analysis
all the time dependent variables are
zero in equation (1) and reduces to:

K u F=  (2).

To be able to solve either equation (1)
or (2) in the case of a fluid-structure
interaction problem the structural left
hand side of these equations has to
be solved simultaneously with the
solution of the flow field for the
calculation of the right hand side. The
solution of the right hand side will in
the most general case involve the
solution of the unsteady Navier-
Stokes equations.

When attempting to solve equation (1)
with for example a finite element
method the fluid dynamic element
mesh has to move together with the
structural finite element mesh.  This
motion of the fluid finite element
model node locations can be
performed with methods such as
spring models [2]    or a Arbitrary
Lagrangian-Eulerian method [3] with
structure nodal velocity linearly
decaing out in to the fluid mesh. A
third method that may be used is a
blowing model [4], which is a
boundary condition type of model.

2.3 Aeroelastic modelling:

The dynamics of the structure in the
tool that has been developed is
presently solved with a Euler
predictor- corrector algorithm [5]. This
algorithm finds the equilibrium of the
left hand side of (1) at each time step
through a sequence of equilibrium
iterations. The algorithm reformulates
(1) into two first order differential
equations:

w
u

t
= d

d
(3)

d

d

w

t
F t u= ( , ) (4)

x t x( )0 0= (5)
w t x( )0 0= ′ .

To define both a measure for static
and dynamic stability the typical
section airfoil is often used [6]. Fig. 1
shows the principles of the structurally
two degree of freedom typical section
airfoil in a wind tunnel.

α

U ∞
K α

Kh

h

Fig. 1 Aeroelastic model
         with a typical airfoil.

3.  STABILITY

3.1 Static aeroelastic stability.

In the case of static aeroelasticity
analysis that has to be performed
contains three steps.

1. Calculation of a steady state
condition.

2. Disturbing the steady state
condition with a small increment in
the structural displacement field
and then calculating the
aerodynamic derivatives

3. Based on the assumption that the
calculated fluid/structure
derivatives of  the flow does not
changes in the range of interest,
the velocity at which static
instability occurs is calculated.

To illustrate this procedure and define
a measure for static stability consider
the system in Fig.1. with only one
degree of freedom; the angle of attack
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degree of freedom. The total angle of
attack is the sum of some initial angle
of attack, α0 and an increment in the
angle of attack due to the elastic twist
of the spring, αe .

α α α= +0 e (5)

To be able to set up the equilibrium
equation (2) for the typical section
airfoil in Fig.1 we have to define the
point called the aerodynamic centre.
This is the point on the airfoil about
which the aerodynamic moment is
independent of the angle of attack.
The equilibrium about the elastic axis
may now be written as:

K M eLACαα = + (6)

Where

Kα - Elastic torsional 
  stiffness.

M AC  - Moment about the 
  aerodynamic centre. 
  Moment is defined 
  positive nose up.

L - Lift or Vertical force, 
  positive up.

e - Distance from 
  aerodynamic centre to
  elastic axis, positive
  elastic axis aft.

The aerodynamic lift and moment are
defined as:

L C qSL= (7)

M C qScAC mAC= (8)

where

C C
C

L L
L= +

0

∂
∂α

α , Lift coefficient

C CmAC mAC=
0

, Constant moment

                          coefficient about 
  aerodynamic centre due 
  to airfoil centre line
  camber.

q
U= ρ 2

2
, Dynamic pressure

ρ - Air density

U - Air velocity

c - Airfoil cord

l - Airfoil span

S - Airfoil area, cx l

By inserting (7) and (8) into (6), the
equilibrium equation takes the
following form

K eqS qScCC
e mAC

L
α

∂
∂αα α α= + +( )0 0

   (9)

This may be rewritten to the form of a
eigenvalue problem ( assuming
CmAC0

=0 and α0 =0 for simplicity)

1 0− =q SeC
K e

L∂ ∂α
α

α/ (10)

The eigenvalue of (10) is the dynamic
pressure at which static instability
occurs for the structure. The velocity
corresponding to qD  is called the
divergence velocity.

q
K

Se
CD

L

= α

∂
∂α

 (11)

Linear aerodynamic models are
sufficient when calculating static
aeroelastic characteristics for an airfoil
flying at subsonic speeds and
subjected to small angles of attack.
The methods for solution of this
category of problems is usually based
on potential flow theory. When
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studying airfoils subjecting to high
angle of attack or other applications
with separated flows a non-linear fluid
flow model is required.

3.2 Dynamic aeroelastic stability.

To define a measure of dynamic
stability consider the typical section
airfoil in Fig. 1 and study the equation
of motion for the h  degree of
freedom.

mh K h Lh
&&+ = − (12)

Where:

m -  Mass of the airfoil

Kh -  Translational 
   spring stiffness

By assuming quasi-steady
aerodynamics with small changes in
angle of attack per time step equation
(12) takes the following form.

mh qS
C h

U
K hL

h
&&

&

+ + =∂
∂α

0 (13).

In standard theory of vibration the
equation of motion for a one degree
of freedom system is often written as

&& & ( )x x x F t+ + =2 0
2ξ ω (14)

By studying the homogenous part of
(14) where F t( )=0 the damping
coefficient in (13) may be identified as

ξ

∂
∂α=

qS C
U

m

L
1

(15)

and the systems eigenfrequency as

ω0
2 = K mh / (16)

By assuming harmonic motion one
may set up the characteristic equation
for the homogenous part of (14) as

λ ξλ ω2
0
22 0+ + = (17)

This has the following roots

λ ξ ξ ω1 2
2

0
2

, = − ± − (18)

Finally, this gives a general solution of
(14) as

x e Ae Bet t t= +− − − −ξ ξ ω ξ ω( )
2

0
2 2

02     (19)
By using (18) and (19) on (14) an
effective aerodynamic damping
constant may be defined as

ζ ξ
ω

∂
∂α

A

L

h

qS C
U

mK
= =

0

1

2
   (20)

A total effective damping constant is
defined as

ζ ζ ζ= +Α S (21)

where ζS is the effective structural
damping constant.

The value ofζ  may cause five
different physical phenomena which
may be characterised as a system in
motion with
  

ζ
ζ

ζ
ζ

ζ

>
=

< <
=

<














1 0

1 0

0 1 0

0

0 0

.

.

.

.

Strong Damping

Critical Damping

Weak Damping

Undamped

Negative Damping

When ζ  becomes negative the
system is locally or globally unstable
and flutter occurs. The system is also
said to have an insufficient level of
structural damping to overcome the
contribution negative aerodynamic
influence.
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4. Computational results:

The dynamic aeroelastic behaviour of
a 2D elliptic structure subjected to
fluid loads at sub-critical Reynolds
number have been studied. The goal
of the analysis was to study the
stability characteristics of the system if
the ellipse was held steady with an
initial elastic torque and then
released.    Fig. 2 shows the principles
of the system that has been studied.
The ellipse is allowed to move as a
rigid body with two degrees of
freedom α and h . The structural
stiffness corresponding to these
degrees of freedoms are Kα  and Kh.
The damping of each degree of
freedom is given by Cα  and Ch .

α

U ∞

K α

Kh

h

a

b

Cα

Ch

      Fig. 2 Principles for ellipse model.

Where:
a/b = 2.0 Cα  = 5.0
Re = 800 Ch  = 0.93
Kα  = 700 N/m
Kh = 5.5 N/m
m  = 10.0 Kg
Jz = 3500 Kgm2

h t( )= 0  = 0.0
α( )t = 0  = 3.0 (Deg.)

Figure 3. shows the finite element
model around the ellipse at zero
degree angle of attack in the upper
part and the same model with some  -
10 degree angle of attack and a h
displacement of 0.2 X a.

Fig. 3.
a) Top model, undeformed mesh
b) Lower model, deformed mesh

The flow field characteristics before
time t= 0.0 sec. show as expected a
vortex shedding behind the ellipse.
The drag, lift and pitching moment
loads on the ellipse are harmonically
alternating as a function of time as
shown in figure 4,

Drag force

Lift force

Pich mom.

Time (s)

Load history on static ellipse

Fig. 4 Load history on static ellipse

When the ellipse is released at time
t=0.0 internally stored elastic energy
starts to interact with the external fluid
load.
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Figure 5 shows the response in α
motion. The motion shows weak
damping behaviour due to structural
and aerodynamic damping of this
mode. The motion reaches a more or
less steady harmonic motion after
about 120 seconds.

 Figure 5. Response in alfa motion.

Figure 6 shows the response in h
here the motion is driven from a
steady elasticaly unloaded state to a
final steady harmonic state. The
solution reaching steady harmonic
motion after about 80 seconds.

Fig. 6 response in h motion.

The frequency at which the both
degree of freedoms  are in motion
after the initial structural mode
motions have been damped out can
be referred to the harmonically
varying load due to the vortex
shedding. The frequency for the
dynamically moving ellipse is about
two times higher than the
corresponding frequency for the
steady ellipse.

Figure 7 shows velocity contours
around the moving ellipse. The plot is
taken from a time when the ellipse is
moving upwards and with a pitch-up
change in angle of attack.
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Fig. 7 Velocity field plot.

5. Conclusions.

This paper has shown that it is
beginning to be possible to solve and
study phenomena in the aeroelastic
area which are dependent on the
solution of unsteady non-linear fluid
mechanics. A program that is
developed for this type of problems
should at least contain tools such as a
Navier-Stokes solver with a dynamic
mesh algorithm, an eigenvalue solver
for the structural equation and a
transient structural dynamic solver.

This paper has shown an example of
a rigid ellipse supported by two elastic
springs in a sub critical Reynolds
number flow field. Both the structural
behaviour and the characteristics are
highly dependent on the fluid/structure
interaction.
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