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Abstract
When performing global/local analysis, the issue of connecting dissimilar meshes often arises, espe-
cially when refinement is performed.  One method of connecting these dissimilar meshes is to use
interface elements.  In MSC/NASTRAN Version 69, interface elements have been implemented for
the p–shell elements.  This paper will discuss the elements and present examples.
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1. Introduction
1.1. Applications

The problem of connecting dissimilar meshes at a common interface is a major one in finite element
analysis.  Such interfaces can result from a variety of sources, which can be divided into two catego-
ries:  those generated by the analyst, and those generated by the analysis program.

Dissimilar meshes generated by the analyst can occur with global/local analysis, where part of the
structure is modeled as the area of primary interest, in which detailed stress distributions are re-
quired, and part of the structure is modeled as the area of secondary interest, through which load
paths are passed into the area of primary interest.  Generally the area of primary interest has a finer
mesh than the area of secondary interest, and therefore a transition area is required.  Severe transi-
tions generally produce elements that are heavily distorted, which can result in poor stresses and
poor load transfer into the area of primary interest.  An example of using interface elements to avoid
such transitions is shown in Figure 1.  Similarly, a patch of elements may be removed from the global
model and replaced by a denser patch for local detail.
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Figure 1:  Example of Interface Elements (exploded view).

In large system problems, different analysts or even different organizations may have created differ-
ent components of the model, such as the wing and the fuselage of an airplane.  Unless they have
carefully coordinated their efforts, the finite element meshes of the different components may not
match, as otherwise required, at the interfaces.

Dissimilar meshes generated by the analysis program can arise with automeshers, which may be re-
quired to transition between large elements and small elements in a limited area.  Many automeshers
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generate tetrahedral meshes for solids, and distorted tetrahedra may be more susceptible to poor re-
sults.  Automeshers are often used in conjunction with shape optimization procedures, where the
shape changes are large enough to warrant remeshing.  In these cases, it would be more efficient to
remesh only the local part of the model and interface it with the rest, rather than remeshing the entire
model.  If the rest of the model has not been remeshed, then the associated parts of the stiffness matrix
need not be recalculated, provided that the previous data has been saved.

In h–refinement, subdivided elements may be adjacent to undivided elements with no room for a
transition area.  Without some kind of interface element, the subdivision would have to be carried
out to the model boundary or otherwise phased out.

1.2. Previous Methods

Much work has been done to resolve the element interface problem, with most of the efforts concen-
trating on moving the nodes or writing multi–point constraint (MPC) equations on the interfaces.
The first approach, moving the nodes, must take into account the element distortions on both sides
of the interface and provide the best redistribution according to some criteria.  However, it is possible
that one or both sides of the interface may be represented only by previously–generated stiffness
matrices, in which case the nodes cannot be moved.  The biggest restriction of moving nodes is that
both sides of the interface must have the same number and type of elements.  Therefore, this method
is not practical for the general problem.

The second approach, using MPC equations, often is used for connecting elements of different types.
For example, the midside node of a quadratic element may be constrained to move linearly with the
vertex nodes in order to match an adjacent linear element, assuming that the vertex nodes for the two
elements are coincident.  Other MPC equations, such as splines, can handle more general cases.
However, MPC equations by definition provide additional relationships for the existing degrees of
freedom on the interface, and in the process reduce the number of independent degrees of freedom.
If there are no degrees of freedom created, this could result in additional local stiffness or other non–
physical effects in the model.

1.3. Current Method

The need and applications for reliable interface technology are great.  NASA Langley Research Cen-
ter has developed a method for analyzing plate and shell structures composed of two or more inde-
pendently modeled substructures, based on a hybrid variational formulation with Lagrange multipli-
ers, and applied it to global/local demonstration problems [1–4].

Under terms of a cooperative agreement between MSC and NASA [5], MSC is implementing this
technology into MSC/NASTRAN for the p–shell elements along a geometric curve.  This agreement
is part of NASA’s continuing effort to transfer technology into the mainstream of industry as an aid
in developing competitiveness in the worldwide market.



4

2. Formulation
The formulation of the interface element, which is a hybrid variational formulation using Lagrange
multipliers, is defined in summary as follows, using primarily the notation in [1].   It is repeated in
more general form here to include the dynamic case.  The complete details for the static case may
be found in [1–3].

The displacement vector ��� on the interface is defined in terms of the node and edge coefficients
����, which are defined on the interface elements, and interpolation functions 
	�, which is a matrix
containing the functions for each field of the interface displacement vector:

��� � �	����
�

The displacement vector ��� on each subdomain  is defined in terms of the node and edge coeffi-
cients ��� and interpolation functions 
��, which is a matrix containing the functions for each field
of the subdomain displacement vector:
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The Lagrange multiplier vector ��� on each subdomain  is defined in terms of the node and edge
coefficients ��� and interpolation functions 
��, which is a matrix containing the functions for each
field of the Lagrange multiplier vector:

�� 
� � ��

��� 
�

Defining the combined operator and material matrix ���, the density �, and the surface tractions ���;
and considering the potential energy for all the subdomains  with the internal energy, inertial forces,
and applied forces, and for the interface � with the Lagrange multipliers gives:
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where the inertial body forces:
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have been multiplied by a factor of one half since they are proportional loads.  Using the standard
assumption of simple harmonic motion for the frequency �:
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and expanding the vectors into their coefficients and interpolation functions gives:
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Defining the matrices of interpolation functions:

� � ��
�

��
	 � �� ��

� � �
�

	�	 � �� ��



5

and substituting these, together with the standard definition of stiffness matrices �	��, mass matrices
�
��, and load vectors ����, into the potential energy gives:
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Partitioning the � into ��, those node and edge coefficients on the interface, and ��, those coefficients
other than on the interface, gives:
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Deriving the Euler equations by taking the variations of the potential energy with respect to the four
groups of variables �� �, �� �, �, and ��   gives:
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Each of the Euler equations has a physical interpretation.  Writing the Euler equations in matrix
form:
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This system of equations is symmetric, but not positive definite.  All of the interface terms ���� and
���� appear in the stiffness matrix, with none in the mass matrix.  Had damping been included, which
generally takes the form of a load proportional to the velocity, the result would have been similar.
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3. Implementation
The addition of interface elements allows dissimilar meshes to be connected over a common geo-
metric boundary, instead of using transition meshes or constraint conditions.  Primary applications
where the analyst specifies the interface elements manually include:  facilitating global/local analy-
sis, where a patch of elements may be removed from the global model and replaced by a denser patch
for a local detail, without having to transition to the surrounding area; and connecting meshes built
by different engineering organizations, such as a wing to the fuselage of an airplane.  Primary ap-
plications where the interface elements could be generated automatically are related to:  automesh-
ers, which may be required to transition between large and small elements between mesh regions;
and h–refinement, where subdivided elements may be adjacent to undivided elements without a
transition area.

Three new bulk data entries, GMBNDC (Geometric Boundary – Curve), GMINTC (Geometric In-
terface – Curve), and PINTC (Properties of Geometric Interface – Curve), were implemented for
specifying the curve interface elements.  These entries define the boundaries of the subdomains, the
interface elements, and the interface element properties, respectively.  Detailed information on the
input data is available in [6].

Currently there are three methods of defining the boundaries of p–shell elements on the boundary
of a subdomain, as shown in Figure 2.  For the curve interface, each boundary may be defined using
the GMCURV with which the finite element edges are associated, the FEEDGEs defining the finite
element edges, or in the most basic form, the GRIDs along the finite element edges.
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Figure 2:  Geometric Boundary Definition.

Once the boundaries have been defined, they must be associated with the interface elements, as
shown in Figure 3.  This is accomplished by referencing the boundaries in the interface element defi-
nition.
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Figure 3:  Interface Element Definition (exploded view).

Since the interface elements consist only of the differences in displacement components weighted
by the Lagrange multipliers, there are no conventional element or material properties.  The property
bulk data entry specifies a tolerance for the interface elements, which defines the allowable distance
between the boundaries of the subdomains.
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4. Example Problems
Several sets of example problems were analyzed, in order to test the capabilities of the interface ele-
ments with various boundary configurations.  The goal of the interface element is that it should not
decrease the accuracy below that obtained using the less refined boundary with a conforming mesh.
However, it will not increase the accuracy above that obtained using the more refined boundary with
a conforming mesh.  For example, if one boundary had two element edges and the other had three
element edges at a given p–level, the accuracy with the interface elements should fall between a simi-
lar problem with two conforming two–edge boundaries and a similar problem with two conforming
three–edge boundaries.

4.1. Cantilever Beam

The first set of example problems used a cantilever beam that had exact solutions at low p–levels.
Three of the non–conforming configurations are shown in Figure 4.

Figure 4:  Cantilever Beam

Tension (exact at p=1), moment (exact at p=2), in–plane shear (exact at p=3), out–of–plane shear
(exact at p=3), and torsion (not exact) load cases were analyzed.  The von Mises stress contours at
p=8 for all five of these cases with the two–element/three–element mesh are shown on the deformed
shape in Figure 5.  The data recovery mesh is used, rather than on the original p–element mesh, so
that better resolution of the deformed shape and stress contours may be shown.  (Note that there are
no stress contours for the tension case, since it has uniform stress.)
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Figure 5:  von Mises Stress Contours on Deformed Shape (p=8)

The normalized values of the external work at p=3 for the five load cases are listed in Table 1 for
three conforming and three non–conforming meshes, all with interface elements.  (Note that since
the torsion case is not exact, the value for the three–element/three–element conforming mesh with-
out interface elements at p=8 was used for normalization.)  For the tension, moment, and two shear
cases, the results were exact for all six meshes.  For the torsion case, with the exception of the one–
element/two–element mesh, the results were progressively better as additional elements were added,
independently of whether the mesh was conforming or not.
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Table 1:  Normalized External Work (p=3)

mesh tension moment shear
(in–plane)

shear
(out–plane)

torsion

one/one with interface 1.0000 1.0000 1.0000 1.0000 0.9875

one/two with interface 1.0000 1.0000 1.0000 1.0000 0.9866

one/three with interface 1.0000 1.0000 1.0000 1.0000 0.9897

two/two with interface 1.0000 1.0000 1.0000 1.0000 0.9902

two/three with interface 1.0000 1.0000 1.0000 1.0000 0.9919

three/three with interface 1.0000 1.0000 1.0000 1.0000 0.9951

The normalized values of the external work at p=8 for the five load cases are listed in Table 2 for
the six meshes.  For the tension, moment, and two shear cases, the results were again exact for all
six meshes.  This illustrates the stability of the interface elements as the p–level increases.  For the
torsion case, the results were progressively better as additional elements were added, independently
of whether the mesh was conforming or not.  The three–element/three–element mesh with interface
elements gave exactly the same results as the same mesh without interface elements.

Table 2:  Normalized External Work (p=8)

mesh tension moment shear
(in–plane)

shear
(out–plane)

torsion

one/one with interface 1.0000 1.0000 1.0000 1.0000 0.9996

one/two with interface 1.0000 1.0000 1.0000 1.0000 0.9997

one/three with interface 1.0000 1.0000 1.0000 1.0000 0.9997

two/two with interface 1.0000 1.0000 1.0000 1.0000 0.9999

two/three with interface 1.0000 1.0000 1.0000 1.0000 0.9999

three/three with interface 1.0000 1.0000 1.0000 1.0000 1.0000
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4.2. Scordelis–Lo Roof

The second set of example problems used the Scordelis–Lo roof [7], which includes curvature in
the interface elements and both membrane and bending behavior in the shell elements.  One of the
configurations is shown in Figure 6.  (Note that this particular mesh refinement is not the most ad-
vantageous, but is being used to illustrate the interface elements.)

Figure 6:  Scordelis–Lo Roof

The roof has simple supports on the curved edges and is loaded by its own weight.  Using symmetry
constraints, only a quarter of the model was analyzed.  The vertical displacement contours for the
two–element/four–element mesh are shown on the deformed shape in Figure 7.  The contours are
again shown on the data recovery mesh.

Figure 7:  Vertical Displacement Contours on Deformed Shape (p=8)
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The vertical displacements at the midside of the free edge at p=3 are listed in Table 3 for two con-
forming and two non–conforming meshes with interface elements and two conforming meshes
without interface elements, which will serve as baselines.  The value cited in [7] is –0.3086, with
the notation that many elements converge to a lower value such as –0.3024.  For the two conforming
configurations, the meshes with and without interface elements match exactly.  Of the displacements
for the two non–conforming meshes, one falls within the range of the conforming configurations,
whereas the other does not, but the solution at p=3 has not yet converged.

Table 3:  Midside Vertical Displacement (p=3)

Mesh Displacement

two/two without interface –0.3176

two/two with interface –0.3176

two/three with interface –0.3162

two/four with interface –0.3182

four/four with interface –0.3195

four/four without interface –0.3195

The vertical displacements at the midside of the free edge at p=8 are listed in Table 4 for the same
four meshes with interface elements and two meshes without.  For the two conforming configura-
tions, the meshes with and without interface elements again match exactly.  Of the displacements
for the two non–conforming meshes, both fall within the range of the conforming configurations,
creating a monotonic progression as elements are added, since the p=8 solution is closer to conver-
gence.

Table 4:  Midside Vertical Displacement (p=8)

Mesh Displacement

two/two without interface –0.3025

two/two with interface –0.3025

two/three with interface –0.3031

two/four with interface –0.3034

four/four with interface –0.3044

four/four without interface –0.3044
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4.3. Square Plate with Circular Hole

The third problem is a square plate with a circular hole, as shown in Figure 8.  The hole is small
enough relative to the plate that additional elements, though not necessary, greatly improve conver-
gence.  This example better illustrates how a global/local problem could be modelled, since the patch
of elements around the hole could be replaced without modifying the mesh away from the hole.

Figure 8:  Square Plate with Circular Hole.

The square plate has a uniform tension load, so that the stress concentration factor at the hole may
be calculated, and symmetry constraints.  Two interface elements were used, since the interface con-
tains a right angle.  The horizontal stress contours for the four–element/two–element non–conform-
ing mesh are shown on the deformed shape in Figure 9.  The contours are again shown on the data
recovery mesh.

Figure 9:  Horizontal Stress Contours on Deformed Shape (p=8)
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The stress concentration factors at p=4 are listed in Table 5 for two conforming and one non–con-
forming meshes with interface elements and two conforming meshes without interface elements,
which will serve as baselines.  The value calculated from [8] for a semi–infinite plate is 2.72, which
is derived from curve fits to photoelastic data for a specified accuracy of much less than 5%.  For
the two conforming configurations, the meshes with and without interface elements match exactly.
The stress concentration factor for the non–conforming mesh falls slightly outside the range of the
conforming configurations, but the solution at p=4 has not yet converged.

Table 5:  Stress Concentration Factor (p=4)

Mesh Stress Concentration

two/two without interface 2.933

two/two with interface 2.933

four/two with interface 2.839

four/four with interface 2.846

four/four without interface 2.846

The stress concentration factors at p=8 are listed in Table 6 for the same three meshes with interface
elements and two meshes without.  For the two conforming configurations, the meshes with and
without interface elements match exactly.  In addition, they match each other and the non–conform-
ing mesh to the accuracy shown, since the p=8 solution has converged.

Table 6:  Stress Concentration Factor (p=8)

Mesh Stress Concentration

two/two without interface 2.778

two/two with interface 2.778

four/two with interface 2.778

four/four with interface 2.778

four/four without interface 2.778
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5. Conclusions
Interface elements for dissimilar p–shell meshes along geometric curves have been implemented in
MSC/NASTRAN.  These elements are applicable to a wide range of problems.  Applications where
the analyst specifies the interface manually include facilitating global/local analysis and attaching
components from different sources, and applications where the interface elements could be gener-
ated automatically are related to automeshers and h–refinement.  The interface elements use the hy-
brid variational formulation developed by NASA, which was summarized in this paper along with
the implementation in MSC/NASTRAN.

Several sets of example problems were demonstrated, ranging from simple models with exact solu-
tions to more complicated applications for global/local analysis.  The cantilever beam models
showed that the interface elements provide the exact solutions, even for non–conforming meshes.
They also showed that the solutions were stable as the p–level increased beyond the exact solution.
The Scordelis–Lo roof showed the use of interface elements on a curved surface, where the solution
has both membrane and bending components and is therefore more complex.  The plate with hole
model showed that the interface elements could be used efficiently for global/local analysis, using
more elements in the area of interest without have to transition to the model boundaries.  The local
area in that model could be removed and replaced with a more refined mesh, if desired.  In addition,
the latter two models demonstrated that for conforming configurations, meshes with and without the
interface elements provided identical results.

It is important to note that the interface elements provide a tool for connecting dissimilar meshes,
but they do not increase the accuracy of the mesh.  As with any interface formulation, the hybrid
variational technology, which imposes continuity conditions in a weak form, can not increase the
accuracy of the adjacent subdomains.  For instance, if a single element edge on one boundary is con-
nected to many element edges on the other boundary, the analysis is going to be limited to the accura-
cy of the less accurate subdomain, no matter how good the interface element is.  This restriction
should be considered when deciding how close to the areas of primary interest to put the interface
elements.
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