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ABSTRACT

This paper presents a theory in which thermal conduction and thermal convection is solved with a single
equation. This equation is a generalised form of Fourier law. The paper presents a method, based on Ritz-
Galerkin theory, for solving this equation. A main application for this equation could be the heat transfer
study between a fluid flow and a solid body. The most important element is, that this theory is done without
the convection theory and without the computation of a convection coefficient.

The domain in which the equation is solved is a finite element. The solution is a linear equation system
where the unknown quantities are the temperature in the finite element nodes.



INTRODUCTION

It is known that thermal conduction is described with Fourier equation:
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t Temperature C = specific heat
T = time g, = heat generation per unit volume

Ay v,z = thermal conductivity coefficient

P = density
In equation (1) there are no terms to describe a change of place for the particles in the studie@.dbonain
describe a heat transfer associated with a change of place for the particles, we have to use the equation:
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Here, the temperature is considered as a function tt¥ (fig, 1) and— 0
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The supplementary term comes, obviously, when we have to make the thermal survey on a infinitesimal
material element, and when we have to compute the expression:
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A main application for this equation could be the heat transfer study between a fluid flow and a solid
body. Looking at equation (2), the most important element is that the heat transfer study between a fluid
flow and a solid body could be done without computing and using a convection coefficient.

SOLVING METHODOLOGY

Ritz-Galerkin method gives us the possibility to tackle a finite element analysis for solving the equation
(2). I shall structure the presentation in two parts:

O Afirst part in which I'll prove the existence of a functional equation on which is possible to apply Ritz-
Galerkin method

[0 A second part in which | shall apply the results on the generalised Fourier law equation (2).
ot
The study will be done in the conditions of a steady state heat tr%?iex O@

For the beginning | will write (2) as :
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With a Dirichlet condition:

t/,, =0 (@)
wheredQ means th€2 domain frontier.

For analysing the problem (3) - (4) we shall use the Sobolev dd4céQ) and HZ'(Q)

Using the definition from [ 1] we'll have:
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hereL2(Q) is the multitude of function® - R whereff 2dx < 00
Q



D%u is the partiabr derivative of a function
Writing downC[f(Q) the multitude of the functions which have the suppofl,iwe have:
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The muItitudeHé*l(Q) is the closing of the multitud€; (Q).1s possible to associate scalar products to
these multitudes. S¢d2*(Q) andH2*(Q) becomes Hilbert spaces.
In [ 4] it is proved that is very simple to changa g, = O Dirichlet conditionto au/,, = g (g# 0)
Dirichlet .

Now we can apply to the problem (3) - (4) the Ritz-Galerkin method. First, we have to take a function
vOHZY(Q), and to make the product:
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If we integrate (5) on the entire dom&inthe result is:
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For the first term from the left we can write:
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With condition (4), equation (7) becomes:
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So, in the conditions of a problem with Dirichlet conditions, equation (6) becomes:
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As we can see equation (9) is a functional equation. Applying Ritz-Galerkin method, we search the
solution as:
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in which the row{vk} forms a base it 2*(Q) Hilbert space.

(10)



Using the functional equation (9), solving the linear system (11), we canfomh&ants from (10).
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For any function(d L2(Q) the linear system has a solution, and the solution is only one. This fact was
proved by Prof. Kalik Carol in work [ 1] .

Here we have:
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Based on a demonstration from [ 1 ] results the fact that if we build th{ir(})\with Ritz-Galerkin

method, this row will converge iHé*l(Q) to the solution of the Dirichlet problem (3) - (4) .

If we consider a Neumann problem ia*(Q) Hilbert space, the results will be the same.
Based on these results, it is possible now to consider the equation (2) written in steady state conditions.

Taking any function ¥H?*(Q), and making the product with (2), results:
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or more:
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Here | used the convention= X X, = Y, X= 2 x:( X X g (15)

Putting (14) under the integral sign on the whole doflaiyields:
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In (16) we can compute the integral from parts:

(17)
To solve equation (14), we have to put now some boundary conditions. I'll consider some imposed

heat flux conditions on the frontier of tkedomain (a Neumann problem)

- for the imposed heat flux zones:
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- for the heat convection flux zones:
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wheren,; = cos{N ,xi) are the components of the normal versor on the surface.

Using (18) and (19) is possible to rewrite (17):
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where: t; - ambient temperature
a - convection coefficient
0Q, - part of theQ domain frontier with a imposed heat flux
0Q, - part of theQ domain frontier where is a convection heat exchange

Equation (16) becomes now:
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At this moment is possible to apply on (21) Ritz-Galerkin method. I'll search the temperature as:



t,= ) GG OR
k=1
(22) T

where \{ ; k=1,n are linear independent functiondiA*(Q) [1] .
To determine these functions I'll appeal to the finite element theory. In this theory are used some
interpolation functions[2],[3],[4]

With these interpolation functions, the temperature in the interior of the finite element is written as:

t N Zt Vk = [Vk elemeni }element

(23)

Heret, k=1,n are the temperature values in the nodes. The functians polynomial functions

and belongs to Sobolev spadé*(Q). Because they are forming a base in the sptciQ) these
functions are linear independent. These functions are forming a base because any temperature from the

finite element can be written like a linear combination with them. Now we can replace (23 ) in (21). The

result is:
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In (24) “n” represents the number of nodes from the finite element.

This linear system of equations has n equations and the unknown quantitieskaré in , the
temperature in the finite element nodes.

Even if this equations solves the conductive and convective heat transfeR iddhwin (the finite
element domain), it is possible to consider as a classical assumption, a face heat cooveatioveCtion
coefficient ) or a face heat flux (q) on the domain (finite element) frontier.

The system (24) can be used to compute at a finite element level a conductive-convective heat transfer

process. Due his form, this system can be brought at the form:

dx
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In the end it is possible to assemble these systems (written for only one finite element) for the whole

domain.

To test this theory | made little computer programm. | took four plane finite elements. The input data is:

ELEMENT 1 ELEMENT 2 ELEMENT 3 ELEMENT 4
node 1 coordinates 0:0 0:;0.01 0;0.015 0;0.02
[m]
node 2 coordinates 0.05:0 0.05;0.01 0.05;0.015 0.05;0.02
[m]
node 3 coordinates 0.05;0.01 0.05; 0.015 0.05;0.02 0.05;0.03
[m]
node 4 coordinates 0:;0.01 0;0.015 0;0.02 0;0.03
[m]
Ay 105; 105 0.136; 0.136 0.136; 0.136 0.136 ; 0.134
[W/mK]
speed [m/s] 0:0 0.2:;0.2 0.2;0.2 0.2:;0.2
Wi, Wy
mass density 8900 900 900 900
[kg/m’]
specific heat 386 2000 2000 2000
[J/Kg K]
a 90 0 0 0
W/m? K]
ambient temperatur 20 0 0 0
[*C]
The results are: If 1 consider the speed = 0 results
90 (imposed) 89,9 90 (imposed) 85.3
Element 4 Element 4
50.1 57.79
50.1 54.6
Element 3 Element 3
31.5 41.5 39.5
31.5
Element 2 Element 2




22 22 254 24.5
Element 1 Element 1
22 22 25 245
Ambient temperature 2@x;= 90 Ambient temperaturex2990

CONCLUSIONS

This theory may be the basis for a new MSC/NASTRAN product.

As we can see, to solve the problem it is necessary to have or to know the speed field in the whole
domain. For this reason, | think that this theory may be a link between MSC/NASTRAN THERMAL and a
soft which, based on Navier-Stokes equations, gives the domain speed field. For example
MSC/AEROELASTICITY.

This theory, and a virtual new MSC product, may be useful for that part of user community working in
aviation.

This theory is possible to be considered as a generalisation for the classical thermal analysis. The results
are logic and is possible to modelate a limit thermal layer and a heat exchange between a solid body and a

fluid flow.
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