THERMAL CONDUCTION AND THERMAL CONVECTION AS A SINGLE THEORY SOLVED WITH FINITE ELEMENT ANALYSIS

By

Mircea Bocioaga
Romanian Aeronautical Enterprise
Brasov, ROMANIA

THERMAL CONDUCTION AND THERMAL CONVECTION AS A SINGLE THEORY SOLVED WITH FINITE ELEMENT METHOD

Mircea Bocioaga
Mathematician, Ph.D. engineer
Adress:
Str.Malaiesti nr. 14
2200 BRASOV
ROMANIA

Abstract

This paper presents a theory in which thermal conduction and thermal convection is solved with a single equation. This equation is a generalised form of Fourier law. The paper presents a method, based on RitzGalerkin theory, for solving this equation. A main application for this equation could be the heat transfer study between a fluid flow and a solid body. The most important element is, that this theory is done without the convection theory and without the computation of a convection coefficient.

The domain in which the equation is solved is a finite element. The solution is a linear equation system where the unknown quantities are the temperature in the finite element nodes.

INTRODUCTION

It is known that thermal conduction is described with Fourier equation:

$$
\begin{aligned}
\frac{\partial t}{\partial \tau} & =\frac{1}{\rho c}\left[\frac{\partial}{\partial x}\left(\lambda_{x} \frac{\partial t}{\partial x}\right)+\frac{\partial}{\partial y}\left(\lambda_{y} \frac{\partial t}{\partial y}\right)+\frac{\partial}{\partial z}\left(\lambda_{v} \frac{\partial t}{\partial z}\right)\right]+\frac{q_{v}}{\rho c} \\
\mathrm{t} & =\text { temperature } \quad \quad \mathrm{c}=\text { specific heat } \\
\tau & =\text { time } \quad q_{v}=\text { heat generation per unit volume } \\
\lambda_{\mathrm{x}, \mathrm{y}, \mathrm{z}} & =\text { thermal conductivity coefficient } \\
\rho & =\text { density }
\end{aligned}
$$

In equation (1) there are no terms to describe a change of place for the particles in the studied domain Ω. To describe a heat transfer associated with a change of place for the particles, we have to use the equation:

$$
\frac{\partial t}{\partial \tau}+\frac{\partial t}{\partial x} \frac{\partial x}{\partial \tau}+\frac{\partial t}{\partial y} \frac{\partial y}{\partial \tau}+\frac{\partial t}{\partial z} \frac{\partial z}{\partial \tau}=\frac{1}{\rho c}\left[\frac{\partial}{\partial x}\left(\lambda_{x} \frac{\partial t}{\partial x}\right)+\frac{\partial}{\partial y}\left(\lambda_{y} \frac{\partial t}{\partial y}\right)+\frac{\partial}{\partial z}\left(\lambda_{z} \frac{\partial t}{\partial z}\right)\right]+\frac{q_{v}}{\rho c}
$$

Here, the temperature is considered as a function $\mathrm{t}=\mathrm{t}(\mathrm{r}, \tau)$ (fig. 1) and $\frac{\partial r}{\partial \tau} \neq 0$

$$
\frac{\partial t}{\partial \tau}+w_{x} \frac{\partial t}{\partial x}+w_{y} \frac{\partial t}{\partial y}+w_{z} \frac{\partial t}{\partial z}=\frac{1}{\rho c}\left[\frac{\partial}{\partial x}\left(\lambda_{x} \frac{\partial t}{\partial x}\right)+\frac{\partial}{\partial y}\left(\lambda_{y} \frac{\partial t}{\partial y}\right)+\frac{\partial}{\partial z}\left(\lambda_{z} \frac{\partial t}{\partial z}\right)\right]+\frac{q_{v}}{\rho c}(2)
$$

The supplementary term comes, obviously, when we have to make the thermal survey on a infinitesimal material element, and when we have to compute the expression:

$$
\frac{d t}{d \tau}=\frac{d t(\vec{r}, \tau)}{\partial \tau}=\frac{\partial t}{\partial \tau}+\frac{\partial t}{\partial \vec{r}} \frac{\partial \vec{r}}{\partial \tau}
$$

A main application for this equation could be the heat transfer study between a fluid flow and a solid body. Looking at equation (2), the most important element is that the heat transfer study between a fluid flow and a solid body could be done without computing and using a convection coefficient.

SOLVING METHODOLOGY

Ritz-Galerkin method gives us the possibility to tackle a finite element analysis for solving the equation (2). I shall structure the presentation in two parts:
\Rightarrow A first part in which I'll prove the existence of a functional equation on which is possible to apply RitzGalerkin method
\Rightarrow A second part in which I shall apply the results on the generalised Fourier law equation (2).
The study will be done in the conditions of a steady state heat transfer $\left(\frac{\partial t}{\partial \tau}=0\right)$
For the beginning I will write (2) as :

$$
\begin{align*}
& -\sum_{i=1}^{3} \frac{\partial}{\partial x_{i}}\left(a_{i}(x) \frac{\partial t}{\partial x_{i}}\right)+\sum_{i=1}^{3} b_{i} \frac{\partial t}{\partial x_{i}}=f(x) \tag{3}\\
& x=\left(x_{1}, x_{2}, x_{3}\right)=(x, y, z) \in \Omega \subset R^{3} ; a_{i} \in C^{1}(\Omega) ; b_{i} \in C(\Omega) \\
& \sum_{i=1}^{3} a_{i} \xi_{i}^{2} \geq \gamma\left(\xi_{1}^{2}+\xi_{2}^{2}+\xi_{3}^{2}\right) ; \forall \xi \in R^{3} \tag{3'}
\end{align*}
$$

With a Dirichlet condition:

$$
\begin{equation*}
t /_{\partial \Omega}=0 \tag{4}
\end{equation*}
$$

where $\partial \Omega$ means the Ω domain frontier.
For analysing the problem (3) - (4) we shall use the Sobolev spaces $H^{2,1}(\Omega)$ and $H_{o}^{2,1}(\Omega)$
Using the definition from [1] we'll have:

$$
H^{2,1}(\Omega)=\left\{u \in L^{2}(\Omega) / \exists D^{\alpha} u \in L^{2}(\Omega) ; \forall|\alpha| \leq 1\right\}
$$

here $L^{2}(\Omega)$ is the multitude of function $\mathrm{f}: \Omega \rightarrow \mathrm{R}$ where $\int_{\Omega} f^{2} d x<\infty$
$D^{\alpha} u$ is the partial α derivative of a function
Writing down $C_{0}^{\infty}(\Omega)$ the multitude of the functions which have the support in Ω, we have:

$$
\operatorname{supp} u=\overline{\{x \in \Omega / u(x) \neq 0\}} \subset \Omega
$$

The multitude $H_{o}^{2,1}(\Omega)$ is the closing of the multitude $C_{0}^{\infty}(\Omega)$. Is possible to associate scalar products to these multitudes. So, $H^{2,1}(\Omega)$ and $H_{o}^{2,1}(\Omega)$ becomes Hilbert spaces.
In [4] it is proved that is very simple to change a $u /_{\partial \Omega}=0$ Dirichlet condition to a $u /_{\partial \Omega}=g(g \neq 0)$ Dirichlet.
Now we can apply to the problem (3) - (4) the Ritz-Galerkin method. First, we have to take a function $\mathrm{v} \in H_{O}^{2,1}(\Omega)$, and to make the product:

$$
\begin{equation*}
-\sum_{i=1}^{3} v \frac{\partial}{\partial x_{i}}\left(a_{i} \frac{\partial t}{\partial x_{i}}\right)+\sum_{i=1}^{3} v b_{i} \frac{\partial t}{\partial x_{i}}=v f \tag{5}
\end{equation*}
$$

If we integrate (5) on the entire domain Ω, the result is:

$$
\begin{equation*}
-\int_{\Omega} \sum_{i=1}^{3} v \frac{\partial}{\partial x_{i}}\left(a_{i} \frac{\partial t}{\partial x_{i}}\right) d x+\int_{\Omega} \sum_{i=1}^{3} v b_{i} \frac{\partial t}{\partial x_{i}} d x=\int_{\Omega} v f d x \tag{6}
\end{equation*}
$$

For the first term from the left we can write:

$$
\begin{equation*}
-\int_{\Omega} v \sum_{i=1}^{3} \frac{\partial}{\partial x_{i}}\left(a_{i} \frac{\partial t}{\partial x_{i}}\right) d x=-\int_{\partial \Omega} v \sum_{i=1}^{3} a_{i} \frac{\partial t}{\partial x_{i}} \cos \left(N, x_{i}\right) d \sigma+\int_{\Omega} \sum_{i=1}^{3} a_{i} \frac{\partial v}{\partial x_{i}} \frac{\partial t}{\partial x_{i}} d x \tag{7}
\end{equation*}
$$

With condition (4), equation (7) becomes:

$$
\begin{equation*}
-\int_{\Omega} v \sum_{i=1}^{3} \frac{\partial}{\partial x_{i}}\left(a_{i} \frac{\partial t}{\partial x_{i}}\right) d x=\int \sum_{\Omega=1}^{3} a_{i} \frac{\partial v}{\partial x_{i}} \frac{\partial t}{\partial x_{i}} d x \tag{8}
\end{equation*}
$$

So, in the conditions of a problem with Dirichlet conditions, equation (6) becomes:

$$
\begin{equation*}
\int_{\Omega} \sum_{i=1}^{3} a_{i} \frac{\partial v}{\partial x_{i}} \frac{\partial t}{\partial x_{i}} d x+\int_{\Omega} \sum_{i=1}^{3} v b_{i} \frac{\partial t}{\partial x_{i}} d x=\int_{\Omega} v f d x \tag{9}
\end{equation*}
$$

As we can see equation (9) is a functional equation. Applying Ritz-Galerkin method, we search the solution as:

$$
\begin{equation*}
t_{n}=\sum_{k=1}^{n} c_{k} v_{k} ; c_{k} \in R \tag{10}
\end{equation*}
$$

in which the row $\left\{v_{k}\right\}$ forms a base in $H_{O}^{2,1}(\Omega)$ Hilbert space.

Using the functional equation (9), solving the linear system (11), we can find C_{k} constants from (10).

$$
\begin{equation*}
\int_{\Omega} \sum_{i=1}^{3} a_{i} \frac{\partial v_{j}}{\partial x_{i}} \frac{\partial t_{n}}{\partial x_{i}} d x+\int_{\Omega} \sum_{i=1}^{3} b_{i} v_{j} \frac{\partial t_{n}}{\partial x_{i}} d x=\int_{\substack{\Omega \\ \mathrm{j}=1, \mathrm{n}}} v_{j} f d x \tag{11}
\end{equation*}
$$

For any function $\mathrm{f} \in L^{2}(\Omega)$ the linear system has a solution, and the solution is only one. This fact was proved by Prof. Kalik Carol in work [1] .

Here we have:

$$
\begin{equation*}
\gamma\left\|t_{n}\right\|_{1,0}^{2} \leq \int \sum_{\Omega} a_{i} \frac{\partial t_{n}}{\partial x_{i}} \frac{\partial t_{n}}{\partial x_{i}} d x+\int_{\Omega} b_{i} t_{n} \frac{\partial t_{n}}{\partial x_{i}} d x=\int_{\Omega} t_{n} f d x \leq\|f\|\left\|t_{n}\right\| \leq\|f\| C\left\|t_{n}\right\|_{1,0} \tag{12}
\end{equation*}
$$

Based on a demonstration from [1] results the fact that if we build the row $\left\{t_{n}\right\}$ with Ritz-Galerkin method, this row will converge in $H_{o}^{2,1}(\Omega)$ to the solution of the Dirichlet problem (3) - (4) .

If we consider a Neumann problem in a $H^{2,1}(\Omega)$ Hilbert space, the results will be the same.
Based on these results, it is possible now to consider the equation (2) written in steady state conditions.
Taking any function $v \in H^{2,1}(\Omega)$, and making the product with (2), results:

$$
\begin{equation*}
\rho c\left(v w_{x} \frac{\partial t}{\partial x}+v w_{y} \frac{\partial t}{\partial y}+v w_{z} \frac{\partial t}{\partial z}\right)=v \frac{\partial}{\partial x}\left(\lambda_{x} \frac{\partial t}{\partial x}\right)+v \frac{\partial}{\partial y}\left(\lambda_{y} \frac{\partial t}{\partial y}\right)+v \frac{\partial}{\partial z}\left(\lambda_{z} \frac{\partial t}{\partial d}\right)+v q_{v} \tag{13}
\end{equation*}
$$

or more:

$$
\begin{equation*}
\rho c \sum_{i=1}^{3} v w_{x i} \frac{\partial t}{\partial x_{i}}-\sum_{i=1}^{3} v \frac{\partial}{\partial x_{i}}\left(\lambda_{x i} \frac{\partial t}{\partial x_{i}}\right)=q v \tag{14}
\end{equation*}
$$

Here I used the convention $x_{1}=x ; x_{2}=y ; x_{3}=z ; x=\left(x_{1}, x_{2}, x_{3}\right)$
Putting (14) under the integral sign on the whole domain Ω, yields:

$$
\begin{equation*}
\rho c \int_{\Omega} \sum_{i=1}^{3} v w_{x i} \frac{\partial t}{\partial x_{i}} d x-\int_{\Omega} \sum_{i=1}^{3} v \frac{\partial}{\partial x_{i}}\left(\lambda_{x i} \frac{\partial t}{\partial x_{i}}\right) d x=\int_{\Omega} v q_{v} d x \tag{16}
\end{equation*}
$$

In (16) we can compute the integral from parts:

$$
\begin{equation*}
-\int_{\Omega} \sum_{i=1}^{3} v \frac{\partial}{\partial x_{i}}\left(\lambda_{x i} \frac{\partial t}{\partial x_{i}}\right) d x=-\int_{\partial \Omega} v \sum_{i=1}^{3} \lambda_{x i} \frac{\partial t}{\partial x_{i}} \cos \left(N, x_{i}\right) d \sigma+\int_{\Omega} \sum_{i=1}^{3} \lambda_{x i} \frac{\partial v}{\partial x_{i}} \frac{\partial t}{\partial x_{i}} d x \tag{17}
\end{equation*}
$$

To solve equation (14), we have to put now some boundary conditions. I'll consider some imposed heat flux conditions on the frontier of the Ω domain (a Neumann problem)

- for the imposed heat flux zones:

$$
\begin{equation*}
q=\lambda_{x} \frac{\partial t}{\partial x} n_{x}+\lambda_{y} \frac{\partial t}{\partial y} n_{y}+\lambda_{z} \frac{\partial t}{\partial z} n_{z}=\sum_{i=1}^{3} \lambda_{x i} \frac{\partial t}{\partial x_{i}} \cos \left(N, x_{i}\right) \tag{18}
\end{equation*}
$$

- for the heat convection flux zones:

$$
\begin{equation*}
\alpha\left(t-t_{E}\right)=\sum_{i=1}^{3} \lambda_{x i} \frac{\partial t}{\partial x_{i}} \cos \left(N, x_{i}\right) \tag{19}
\end{equation*}
$$

where $n_{x i}=\cos \left(N, x_{i}\right)$ are the components of the normal versor on the surface.
Using (18) and (19) is possible to rewrite (17):

$$
\begin{equation*}
-\int_{\Omega}^{3} \sum_{i=1}^{3} v \frac{\partial}{\partial x_{i}}\left(\lambda_{x i} \frac{\partial t}{\partial x_{i}}\right) d x=-\int_{\partial \Omega_{1}} q v d \sigma_{1}+\int_{\partial \Omega_{2}} \alpha v\left(t-t_{E}\right) d \sigma_{2}+\int_{\Omega} \sum_{i=1}^{3} \lambda_{x i} \frac{\partial v}{\partial x_{i}} \frac{\partial t}{\partial x_{i}} d x \tag{20}
\end{equation*}
$$

where: t_{E}-ambient temperature
α - convection coefficient
$\partial \Omega_{1}$ - part of the Ω domain frontier with a imposed heat flux
$\partial \Omega_{2}$ - part of the Ω domain frontier where is a convection heat exchange
Equation (16) becomes now:

$$
\begin{equation*}
\rho c \int_{\Omega} v \sum_{i=1}^{3} w_{x i} \frac{\partial t}{\partial x_{i}} d x-\int_{\partial \Omega_{1}} q v d \sigma_{1}+\int_{\partial \Omega_{2}} \alpha v\left(t-t_{E}\right) d \sigma_{2}+\int_{\Omega} \sum_{i=1}^{3} \lambda_{x i} \frac{\partial v}{\partial x_{i}} \frac{\partial t}{\partial x_{i}} d x=\int_{\Omega} v q_{v} d x \tag{21}
\end{equation*}
$$

At this moment is possible to apply on (21) Ritz-Galerkin method. I'll search the temperature as:

$$
\begin{equation*}
t_{n}=\sum_{k=1}^{n} c_{k} v_{k} ; c_{k} \in R \tag{22}
\end{equation*}
$$

where $\mathrm{V}_{\mathrm{k}} ; \mathrm{k}=1, \mathrm{n}$ are linear independent functions in $H^{2,1}(\Omega)$ [1].
To determine these functions I'll appeal to the finite element theory. In this theory are used some interpolation functions [2], [3], [4]

With these interpolation functions, the temperature in the interior of the finite element is written as:

$$
\begin{equation*}
t=\sum_{k=1}^{n} t_{k} v_{k}=\left[v_{k}\right]_{\text {element }}\left\{t_{k}\right\}_{\text {element }} \tag{23}
\end{equation*}
$$

Here $t_{k} \quad \mathrm{k}=1, \mathrm{n}$ are the temperature values in the nodes. The functions V_{k} are polynomial functions and belongs to Sobolev space $H^{2,1}(\Omega)$. Because they are forming a base in the space $H^{2,1}(\Omega)$ these functions are linear independent. These functions are forming a base because any temperature from the finite element can be written like a linear combination with them. Now we can replace (23) in (21). The result is:

$$
\begin{gather*}
\rho c \int_{\Omega} v_{j} \sum_{i=1}^{3} w_{x i} \sum_{k=1}^{n} t_{k} \frac{\partial v_{k}}{\partial x_{i}} d x-\int_{\partial \Omega_{1}} q v_{j} d \sigma_{1}+\int_{\partial \Omega_{2}} \alpha v_{j}\left(\sum_{k=1}^{n} t_{k} v_{k}-t_{E}\right) d \sigma_{2}+\int_{\Omega=1}^{3} \sum_{i=1}^{3} \lambda_{x i} \frac{\partial v_{j}}{\partial x_{i}} \sum_{k=1}^{n} t_{k} \frac{\partial v_{k}}{\partial x_{i}} d x=\int_{\Omega} v_{j} q_{v} d x \\
\mathrm{j}=1, \mathrm{n} \tag{24}
\end{gather*}
$$

In (24) " n " represents the number of nodes from the finite element.
This linear system of equations has n equations and the unknown quantities are $\mathrm{t}_{\mathrm{k}} ; \mathrm{k}=1, \mathrm{n}$, the temperature in the finite element nodes.

Even if this equations solves the conductive and convective heat transfer in the Ω domain (the finite element domain), it is possible to consider as a classical assumption, a face heat convection (α - convection coefficient) or a face heat flux (q) on the domain (finite element) frontier.

The system (24) can be used to compute at a finite element level a conductive-convective heat transfer process. Due his form, this system can be brought at the form:

$$
[\mathrm{K}]_{\text {element }}\{\mathrm{t}\}_{\text {element }}=\{\mathrm{f}\}
$$

In the end it is possible to assemble these systems (written for only one finite element) for the whole domain.

To test this theory I made little computer programm. I took four plane finite elements. The input data is:

	ELEMENT 1	ELEMENT 2	ELEMENT 3	ELEMENT 4
node 1 coordinates $[\mathrm{m}]$	$0 ; 0$	$0 ; 0.01$	$0 ; 0.015$	$0 ; 0.02$
node 2 coordinates $[\mathrm{m}]$	$0.05 ; 0$	$0.05 ; 0.01$	$0.05 ; 0.015$	$0.05 ; 0.02$
node 3 coordinates $[\mathrm{m}]$	$0.05 ; 0.01$	$0.05 ; 0.015$	$0.05 ; 0.02$	$0.05 ; 0.03$
node 4 coordinates $[\mathrm{m}]$	$0 ; 0.01$	$0 ; 0.015$	$0 ; 0.02$	$0 ; 0.03$
$\lambda_{\mathrm{x}}, \lambda_{\mathrm{y}}$ $[\mathrm{W} / \mathrm{mK}]$	$105 ; 105$	$0.136 ; 0.136$	$0.136 ; 0.136$	$0.136 ; 0.136$
speed $[\mathrm{m} / \mathrm{s}]$ $\mathrm{w}_{\mathrm{x}}, \mathrm{w}_{\mathrm{y}}$	$0 ; 0$	$0.2 ; 0.2$	$0.2 ; 0.2$	$0.2 ; 0.2$
mass density $\left[\mathrm{kg} / \mathrm{m}^{3}\right]$	8900	900	900	900
specific heat $[\mathrm{J} / \mathrm{Kg} \mathrm{K}]$	386	2000	2000	0
α $\left[\mathrm{W} / \mathrm{m}^{2} \mathrm{~K}\right]$	90	0	0	0
ambient temperature $\left[{ }^{\circ} \mathrm{C}\right]$	20			0

The results are:

90 (imposed)	89.9
Element 4	
50.1	
50.1	
Element 3	
31.5	
31.5	
Element 2	

If I consider the speed $=0$ results

90 (imposed)		85.3
	Element 4	
57.79		
54.6	Element 3	
41.5		39.5
	Element 2	

22		22
	Element 1	
22		22

25.4		24.5
	Element 1	
25		24.5

Ambient temperature $20 ; \alpha=90$
Ambient temperature $20 ; \alpha=90$

CONCLUSIONS

This theory may be the basis for a new MSC/NASTRAN product.
As we can see, to solve the problem it is necessary to have or to know the speed field in the whole domain. For this reason, I think that this theory may be a link between MSC/NASTRAN THERMAL and a soft which, based on Navier-Stokes equations, gives the domain speed field. For example MSC/AEROELASTICITY.

This theory, and a virtual new MSC product, may be useful for that part of user community working in aviation.

This theory is possible to be considered as a generalisation for the classical thermal analysis. The results are logic and is possible to modelate a limit thermal layer and a heat exchange between a solid body and a fluid flow.

REFERENCES

1 - Kalik Carol - Ecuatii cu derivate partiale - E.D.P. Bucuresti 1980
2 - Dan Garbea - Analiza cu elemente finite - Editura Tehnica - Bucuresti 1990
3 - Vestemean Nicolae - Seminar notes
4 - Bocioaga Mircea - Contributii la determinarea distributiei campului de temperaturi si la imbunatirea performantelor schimbatoarelor de caldura convective prin metoda elementului finit si a analogiei conductive - Ph.D. Thesis

5 - MSC/NASTRAN ENCYCLOPEDIA, Version 68, The MacNeal Schwendler Corporation, Los Angeles 1994

