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ABSTRACT

    This paper presents a theory in which thermal conduction and thermal convection is solved with a single
equation. This equation is a generalised form of Fourier law. The paper presents a method, based on Ritz-
Galerkin theory, for solving this equation. A main application for this equation could be the heat transfer
study between a fluid flow and a solid body. The most important element is, that this theory is done without
the convection theory and without the computation of a convection coefficient.
    The domain in which the equation is solved is a finite element. The solution is a linear equation system
where the unknown quantities are the temperature in the finite element nodes.
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INTRODUCTION

It is known that thermal conduction is described with Fourier equation:
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                 t = temperature                      c = specific heat

                 τ =  time                            qv  = heat generation per unit volume

               λx,y,z = thermal conductivity coefficient

                 ρ = density
    In equation ( 1 ) there are no terms to describe a change of place for the particles in the studied domain Ω. To
describe a heat transfer associated with a change of place for the particles, we have to use the equation:
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    Here, the temperature is considered as a function t = t (r,τ) (fig. 1) and 
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                                                                     w = speed of the particles

                                             z                                 dV

                                                                                       ( )t r0,τ

                                                                                                                  ( )t r ,τ τ+ ∆

                                                            r0                             r
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    The supplementary term comes, obviously, when we have to make the thermal survey on a infinitesimal
material element, and when we have to compute the expression:
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    A main application for this equation could be the heat transfer study between a fluid flow and a solid
body. Looking at equation (2), the most important element is that the heat transfer study between a fluid
flow and a solid body could be done without computing and using a convection coefficient.

SOLVING METHODOLOGY

    Ritz-Galerkin method gives us the possibility to tackle a finite element analysis for solving the equation
(2). I shall structure the presentation in two parts:
⇒ A first part in which I’ll prove the existence of a functional equation on which is possible to apply Ritz-

Galerkin method
⇒ A second part in which I shall apply the results on the generalised Fourier law equation (2).

    The study will be done in the conditions of a steady state heat transfer 
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    With a Dirichlet condition:

             t /∂Ω = 0                                                                                                                    (4)
     where ∂Ω means the Ω domain frontier.
    For analysing the problem (3) - (4) we shall use the Sobolev spaces ( )H 2 1, Ω  and HO

2 1, ( )Ω
    Using the definition from [ 1] we’ll have:

             ( ) ( ) ( ){ }H u L D u L2 1 2 2 1, / ;Ω Ω Ω= ∈ ∃ ∈ ∀ ≤α α

here ( )L2 Ω  is the multitude of function f:Ω→R where f dx2
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   D uα  is the partial α derivative of a function
    Writing down ( )C0

∞ Ω  the multitude of the functions which have the support in Ω, we have:

                                          supp u =  x∈Ω / u(x)≠0  ⊂ Ω

  The multitude HO
2 1, ( )Ω  is the closing of the multitude ( )C0

∞ Ω . Is possible to associate scalar products to

these multitudes. So, ( )H 2 1, Ω  and HO
2 1, ( )Ω  becomes Hilbert spaces.

In [ 4] it is proved that is very simple to change a u /∂Ω = 0 Dirichlet condition to a u g/∂Ω =  (g ≠ 0)
Dirichlet .
   Now we can apply to the problem (3) - (4) the Ritz-Galerkin method. First, we have to take a function
v∈HO

2 1, ( )Ω , and to make the product:
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    If we integrate (5) on the entire domain Ω, the result is:
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    For the first term from the left we can write:
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    With condition (4), equation (7) becomes:

             −








 =

= =
∑∫ ∑∫v

x
a

t

x
dx a

v

x

t

x
dx

ii
i

i
i

i i i

∂
∂

∂
∂

∂
∂

∂
∂1

3

1

3

Ω Ω
                                                 (8)

    So, in the conditions of a problem with Dirichlet conditions, equation (6) becomes:
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    As we can see equation (9) is a functional equation. Applying Ritz-Galerkin  method, we search the
solution as:
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in which the row { }vk  forms a base in HO
2 1, ( )Ω  Hilbert space.
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    Using the functional equation (9), solving the linear system (11), we can find Ck constants from (10).
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    For any function f∈ ( )L2 Ω  the linear system has a solution, and the solution is only one. This fact was

proved by Prof. Kalik Carol in work [ 1] .

    Here we have:
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    Based on a demonstration from [ 1 ] results the fact that if we build the row { }tn  with Ritz-Galerkin

method, this row will converge in HO
2 1, ( )Ω  to the solution of the Dirichlet problem (3) - (4) .

    If we consider a Neumann problem in a ( )H 2 1, Ω  Hilbert space, the results will be the same.

    Based on these results, it is possible now to consider the equation (2) written in steady state conditions.

Taking any function v∈ ( )H 2 1, Ω , and making the product with (2), results:
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or more:

        ρ
∂
∂

∂
∂

λ
∂
∂

c vw
t

x
v

x

t

x
qvxi

i i ii
x i

i= =
∑ ∑−









 =

1

3

1

3

(14)

    Here I used the convention ( )x x x y x z x x x x1 2 3 1 2 3= = = =; ; ; , ,                                                       (15)

    Putting (14) under the integral sign on the whole domain Ω, yields:
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    In (16) we can compute the integral from parts:
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         To solve equation (14), we have to put now some boundary conditions. I’ll consider some imposed

heat flux conditions on the frontier of the Ω domain (a Neumann problem)

        - for the imposed heat flux zones:
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        - for the heat convection flux zones:
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where ( )n N xxi i= cos ,  are the components of the normal versor  on the surface.

    Using (18) and (19) is possible to rewrite (17):
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  where:    tE - ambient temperature

            α  - convection coefficient

          ∂Ω1  - part of the Ω domain frontier with a imposed heat flux

          ∂Ω2  - part of the Ω domain frontier where is a convection heat exchange

    Equation (16) becomes now:

        ( )ρ
∂
∂

σ α σ λ
∂
∂

∂
∂∂ ∂

c v w
t

x
dx qvd v t t d

v

x

t

x
dx vq dxxi

i i
E xi

i i i
v

= =
∑∫ ∫ ∫ ∑∫ ∫− + − + =

1

3

1 2
1

3

1 2Ω Ω Ω Ω Ω
 (21)

    At this moment is possible to apply on (21) Ritz-Galerkin method. I’ll search the temperature as:
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where Vk ; k=1,n  are linear independent functions in ( )H 2 1, Ω  [ 1 ] .

    To determine these functions I’ll appeal to the finite element theory. In this theory are used some

interpolation functions [ 2 ], [ 3 ], [ 4 ]

With these interpolation functions, the temperature in the interior of the finite element is written as:
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    Here tk  k = 1 , n  are the temperature values in the nodes. The functions Vk are polynomial functions
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    In (24) “n” represents the number of nodes from the finite element.

    This linear system of equations has n equations and the unknown quantities are tk  ; k =1,n  , the

temperature in the finite element nodes.

    Even if this equations solves the conductive and convective heat transfer in the Ω domain (the finite

element domain), it is possible to consider as a classical assumption, a face heat convection (α - convection

coefficient ) or a face heat flux (q) on the domain (finite element) frontier.

    The system (24) can be used to compute at a finite element level a conductive-convective heat transfer

process. Due his form, this system can be brought at the form:
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                                     [ K ] element  { t} element = { f }

    In the end it is possible to assemble these systems (written for only one finite element) for the whole

domain.

    To test this theory I made little computer programm. I took four plane finite elements. The input data is:

ELEMENT 1 ELEMENT 2 ELEMENT 3 ELEMENT 4

node 1 coordinates

[m]

0 ; 0 0 ; 0.01 0 ; 0.015 0 ; 0.02

node 2 coordinates

[m]

0.05 ; 0 0.05 ; 0.01 0.05 ; 0.015 0.05 ; 0.02

node 3 coordinates

[m]

0.05 ; 0.01 0.05 ; 0.015 0.05 ; 0.02 0.05 ; 0.03

node 4 coordinates

[m]

0 ; 0.01 0 ; 0.015 0 ; 0.02 0 ; 0.03

λx,λy

[W/mK]

105 ; 105 0.136 ; 0.136 0.136 ; 0.136 0.136 ; 0.136

speed [m/s]

wx,wy

0 ; 0 0.2 ; 0.2 0.2 ; 0.2 0.2 ; 0.2

mass density

[kg/m3]

8900 900 900 900

specific heat

[J/Kg K]

386 2000 2000 2000

α

[W/m2 K]

90 0 0 0

ambient temperature

[oC ]

20 0 0 0

  The results are:                                                                                   If  I consider the speed = 0 results

90 (imposed)                             89.9

Element 4

50.1

50.1

90 (imposed)                                  85.3

Element 4

57.79

54.6

Element 3

31.5

31.5

Element 3

41.5                                                 39.5

Element 2 Element 2
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22                                                22 25.4                                                 24.5

Element 1

22                                                22

Element 1

25                                                    24.5

  Ambient temperature 20 ; α = 90                                                          Ambient temperature 20  ; α = 90

CONCLUSIONS

    This theory may be the basis for a new MSC/NASTRAN product.

    As we can see, to solve the problem it is necessary to have or to know the speed field in the whole

domain. For this reason, I think that this theory may be a link between MSC/NASTRAN THERMAL and a

soft which, based on Navier-Stokes equations, gives the domain speed field. For example

MSC/AEROELASTICITY.

    This theory, and a virtual new MSC product, may be useful for that part of user community  working in

aviation.

    This theory is possible to be considered as a generalisation for the classical thermal analysis. The results

are logic and is possible to modelate a limit thermal layer and a heat exchange between a solid body and a

fluid flow.
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