Contact Us

Company:

Products:

Dytran
MSC Nastran
Patran

Industries:

Consumer Products

Overview:
クリーブランドゴルフは、75億ドルのゴルフ用品製造業大手メーカーで、競争力の高いパフォーマンス重視の市場において、毎年新しいゴルフクラブデザインを発表しています。
Challenge:
クリーブランドゴルフは、世界でも第1位のゴルフ用品メーカーになる見通しです。 同社は、あらゆるスキルレベルのゴルファーのためのクラス最高のクラブを作るために、多くの設計の可能性を徹底的かつ迅速に評価する必要がありました。 これを行うために、ジェフと彼のチームは、毎月多くの試作品を作成、構築、テストして、ゴルフクラブデザインを迅速に最適化する必要がありました。 プロトタイプの作成に必要なリードタイムとコストを考慮すると、従来の「ビルド&テスト」設計手法ではこの要件を満たすことができませんでした。
Benefits:
クリーブランドゴルフでは、1日以内に新しいゴルフクラブデザインや変更されたゴルフクラブデザインのバーチャルプロトタイプを作成し、テストすることができます。 設計サイクル時間の3000%の改善をしました。
 
 
pdf iconDOWNLOADdown arrow

Company:

EDAG, voestalpine, and Simufact

Products:

Simufact
Simufact Additive

Industries:

Automotive

Overview:

In a common innovation project called LightHinge+, EDAG Engineering, voestalpine Additive Manufacturing Center and Simufact Engineering jointly developed a new hood hinge. The project team used the extended possibilities of additive production in order to re-think the component, to re-construct it and subsequently to manufacture it additively. As a result, the new hinge was built with 50% weight reduction compared to the original part, and with the additional advantage to have nearly the entire pedestrian protection functionality integrated within one part. It takes fewer component parts and less assembly steps to build the new hood hinge.

The design was done supported by topology optimization, which finally led to a bionic-like extremely filigree and lightweight structure. Such parts can only be reasonably produced by utilization of AM technology.


 
pdf iconDOWNLOADdown arrow

Company:

McMaster University

Products:

Actran Acoustics

Industries:

Automotive

Overview:

The transportation industry is facing various new technological changes. Among them, the replacement of traditional internal combustion engines by electric powertrains makes new vehicles quieter. Still, new challenges in noise and vibration are rising, in particular during the design of electric motors. In order to develop efficient architectures meeting the expectations both in terms of performance and acoustic comfort, engineers need to access new methods and tools.

Motor design generally starts with the torque as the main purpose of an electric motor is to deliver the required torque at a given speed range. Then, the dimensions of the motor start becoming apparent and efficiency analysis, radial force analysis, structural analysis, and acoustic analysis enter the loop.

“Acoustics analysis should be part of the process and not applied at the end of it” explains Dr. Berker Bilgin, Research Program Manager and Chief Engineer of Canada Excellence Research Chair in Hybrid Powertrain program at McMaster University. If not, it will become difficult to reduce acoustic noise from the motor once the motor design is finalized. Electric motor noise is mainly due to the impact of electromagnetic radial forces (see Figure 1) that excite the stator structure.

Results Validation:

By including Actran in their design process, McMaster researchers developed current control techniques to limit acoustic noise: “Without making any changes in the motor we can actually reduce the acoustic noise just by optimizing the current, because the radial forces are also related to stator excitation, and we experimentally verified drastic noise reduction in switch reluctance motors”, said Dr. Berker Bilgin.

The use of simulation tools has reduced significantly the cost of prototyping and allowed a more advanced analysis of the designed product. Another added value of simulation is of course the attention paid to details thanks to 3D acoustic modelling capabilities. In addition, Actran’s visualization capabilities offer a great possibility for students to train and dig deeper in their research.

In the future, CERC in Hybrid Powertrain team plan on working on how to modify the structural modes without affecting the torque performance of the motor, focusing on current controls of the motors, or modelling the damping ratio of the motor for accurate estimation and reduction of acoustic noise in electric motors.


 
pdf iconDOWNLOADdown arrow

Company:

Safran

Products:

Simufact
Simufact Additive

Industries:

Aerospace

Overview:

One of the manufacturing processes in which Safran Additive Manufacturing is more specifically interested in, is the Laser Beam Melting (LBM) process. The simulation of this process aims at identifying issues associated with part distortion during the manufacturing process, as well as the potential risks of failure of the part and its supporting structure. Safran called on MSC Software, which offers a solution that uniquely covers the entire manufacturing process, from the initial melting step of the part to the completion of a final HIP treatment (Hot Isostatic Pressing), including all post-processing operations such as a stress-relaxation heat treatment, baseplate cutting and supports removal. This solution is Simufact Additive.

Results Validation:

Safran Additive Manufacturing has taken full advantage of the added value of the Simufact Additive solution in order to secure the integration of the additive manufacturing processes into its “product-process” development processes, both upstream during product design and downstream for the production launch.

Safran Additive Manufacturing is now focusing on extending the use of the Simufact Additive solution to different types of parts and different grades of material, in order to improve the design process for additive manufacturing as a whole. MSC Software supports Safran Additive Manufacturing and the Group in achieving this objective through this solution that integrates into the global additive manufacturing value chain, ensuring a quality and open digital continuity.

Benefits:

The use of Simufact Additive has enabled us to save considerable time in production preparation thanks to the predictive nature of the software, which limits development by manufacturing iterations by using virtual development upstream, but also during the part design phase, by enabling us to anticipate the effects and limitations of the process at the product design level.

One of the added values of the Simufact Additive solution is that it allows us to bring together two activities: engineering and production. On the one hand, people from engineering who design parts with a strong focus on part performance in service, and, on the other hand, the methods office who master the industrial processes and its associated constraints. Simufact Additive is a solution well adapted to simultaneous engineering that facilitates dialogue between the different business activities involved in the same project. In addition, the software is easy to use, with an intuitive, business-oriented interface that allows for quick and easy appropriation/ownership.


 
pdf iconDOWNLOADdown arrow

Company:

Hyundai Motor Company

Products:

Actran Acoustics

Industries:

Automotive

Overview:

At moderate to high speeds, the only external noises typically generated by electric vehicles are caused by wind resistance or tire noise. As a consequence, electric vehicles present a risk to pedestrians and cyclists, especially those who are visually or hearing impaired or listening to headphones.

Hyundai active pedestrian alerting system Regulations have been issued in both the United States and the European Union requiring that newly manufactured electric vehicles make an audible noise when traveling at low speeds. These regulations have differing requirements for the amplitude and frequency content of the warning sound.

Results Validation:

The simulation results were validated by conducting a 1-volt sine sweep test for both the actual speaker and the simulations. As shown in the figure above, the spectral behavior of sound at 1 meter from the speaker predicted by simulation matches the physical measurements nearly perfectly.

By using Actran to optimize cavity and duct resonances, Hyundai engineers were able to design the speaker to handle low, mid and high frequencies as needed to meet both US and EU regulations while at the same time minimizing speaker size and power consumption. “The simulation results provided by Actran were much more comprehensive than information generated by physical testing, which helped Hyundai engineers quickly iterate to an optimized design in about half the time that would have been required using traditional build and test methods,” Lee said.


 
pdf iconDOWNLOADdown arrow

Company:

Major automotive OEM

Products:

Digimat

Industries:

Automotive

Overview:

While Sheet Molded Compound (SMC) materials have been widely used in the automotive industry for some time, recently there has been a move to apply SMCs on more structurally demanding components. Though the material has long been considered quasi-isotropic with relative success, it has become apparent in industry that due to the complex manufacturing process, optimal structural design is not possible without considering the real anisotropic nature of the material.. With growing demand from the market, now is the time to leverage advanced SMC modeling capabilities targeting crash performance.

Results Validation:

Static and crash FEA simulations can now attain an excellent level of accuracy in stiffness and can capture peak load and displacement trends for typical part load cases.

The inner seat part illustrates the proposed workflow from process simulation to structural application. The Digimat simulation achieves a much better fit with respect to test data for most load cases, including head impact (puncture) and provide a good indication of hot spot localizations.


 
pdf iconDOWNLOADdown arrow

Company:

Robert Bosch Engineering and Solutions Pvt Ltd

Products:

Simufact Additive

Industries:

Additive Manufacturing

Challenge:

Avoid additive manufacturing issues (distortion, residual stress) and establish a “right first time” manufacturing process.

Solution:

Build process simulation helped Bosch to predict manufacturing issues and to find the right countermeasures to optimize the AM build process.


 
pdf iconDOWNLOADdown arrow

Company:

Vellore Institute of Technology

Products:

Adams
Adams Car

Industries:

Automotive

Challenge:

Zuura Formula Racing is a student team from the Vellore Institute of Technology in Chennai, India that participates regularly in the Formula SAE student competition organized across the globe by SAE Interna-tional.

For participating teams, the task at hand is to develop a small formula-style race car. Each student team designs, builds and tests a prototype based on a series of rules, aimed at ensuring on-track safety and promoting clever problem solving. The prototype is evaluated for its potential as a production item.

During the course of this project, one of the focus areas for the Zuura Formula Racing team was to ensure good suspension for their vehicle. To achieve this, they needed to ensure that the tires were as perpendicu-lar to the ground as possible to achieve maximum traction. The front geometry had to be designed such that it had a negative camber in jounce. This was an important factor in keeping the wheels perpendicular to the ground, and also to resist body roll.

The main target before the vehicle dynamics simulation engineer at Zuura Formula Racing was to improve the ride and handling of the vehicle by reducing yaw, pitch and roll rates.

Solution:

The Zuura Formula Racing team used the Adams Car software from MSC Software. Adams Car allows students to design and simulate their FSAE vehicles to maximize their vehicle performance. With Adams Car, FSAE teams can quickly build and test their functional virtual prototypes of complete vehicles and vehicle subsystems. FSAE engineering teams can exercise their vehicle designs under various road condi-tions, performing the same tests they normally run in a test lab or on a test track, but in a fraction of time.


 
pdf iconDOWNLOADdown arrow

Company:

IDEA INC.

Products:

Dytran
MSC Nastran
Patran

Industries:

Heavy Equipment
Shipbuilding

Overview:
概要  この論文は、津波サバイバルカプセルの設計、工学、および検証におけるMSCソフトウェアの使用を概説しています。津波は世界中の135カ国の沿岸地域社会にとって絶え間ない脅威となっています。2004年12月、インドネシアのスマトラ島西岸でマグニチュード9.1の地震が発生しました。この地震により、津波は最大30メートル(98フィート)まで上昇しました。津波はおよそ23万人の命を奪いました。日本の仙台市では、2011年3月、マグニチュード9.03の地震が発生し、40.5メートル(133フィート)の高さに達した津波が発生し、およそ2万5,000人の命を奪いました。  日本気象庁による将来の東京湾南側の地震・津波事故の予測では25万人を超える犠牲者となっています。津波にさらされる沿岸の総人口は250万人を超えています。  そのような自然災害で、このような数の人々を失うことは、医学、深宇宙探査、ナノテクノロジ―などの科学的なブレークスルーの時代において、正当化できません。したがって、サバイバルカプセルは、このリスクの一部を軽減し、これらの地域の人々に代替選択肢を提供する試みです。  津波イベントは非常に危険な環境であり、大きな物体の衝撃、鋭い物体の貫通、動的な衝撃、衝撃および熱などの荷重ケースに耐えなければならないように構造に多くの重要な厳しい要求を提示します。  これらの条件を正確にシミュレートするために、IDEA Internationalはさまざまな航空宇宙関連プログラムで毎日運用している、MSCソフトウェアを使用することを選択しました。カプセルの解析のために、NASTRAN、DYTRANおよびPATRANを利用しました。
Results Validation:
解析と試験の相関 壁面衝突の相関について  剛体壁とサバイバルカプセルとの衝突を、DYTRANを用いてシミュレートしました。カプセルは、全占有重量で17.3mphの初期速度に設定されました。シミュレートされた変形が21.59×17.78cm平らな領域によって図8に示されています。  サバイバルカプセルを試験するために、10フィートから落下させて、コンクリート床に17.3mphで衝突させました。この落下は、図8に示すように、19.5×22.5cmの恒久的に変形した平らな領域を生じさせました。  恒久的に変形した領域の面積は、シミュレーションモデルと比較した場合、試験品で14.2%大きくなりました。この差異は許容範囲内ではありますが、DYTRANモデルにドアをモデル化することによって、より密接な相関が得られた可能性があります。ドアがなくても、ドアの切開部は自由に圧縮でき、カプセルの永久変形を軽減することができます。 貫通の相関について  短い剛体棒に衝突するカプセルをシミュレートするために、重い剛体棒を固定された平板に突き刺さるように発射しました。棒は、運動量伝達が固定棒に当たる可動カプセルと同等であるように、カプセルと同じ質量を有するようにモデル化されました。DYTRANで実施されたシミュレーションによれば、カプセルは、5mphで剛体棒に直撃した後で、深さ22.4mmの衝撃窪みを残します。図10に変形を示します。  さらに、シミュレーションでは、剛体棒に15mph以上の速度で衝突すると、カプセルが貫通することが示されています。テスト結果は、これらのシミュレーションが控えめであることを示しています。図11は、16.29cmからの落下試験(4mphに相当)の結果を示し、7.38mmの永久変形を生じました。  テストとシミュレーションの違いは、いくつかの要因によるものです。第1に、カプセルを所望の衝撃ゾーンに正確に落とすことが難しい課題でした。したがって、すべての衝撃試験は、パネルのたわみを減少させる硬いフレームの近くで発生しました。また、カプセルシェルは湾曲しており、シミュレーションモデルが移動する棒エネルギーのすべてを吸収するところで、剛体棒がかすめることを可能にします。さらに、シミュレートされたプレートは、半球が加工されひずみ硬化し延性が低下したにもかかわらず、理想的な材料条件を使用します。シミュレーションとテストとの間の相関が低いにもかかわらず、シミュレーション貫通法は控えめであり、将来の設計の繰り返しに使用できることが確認されています。
 
 
pdf iconDOWNLOADdown arrow

Company:

Nampak

Products:

Dytran

Industries:

Packaging

Overview:
高いサービスレベル、技術サポート、競争力のある充填システム、そして最終的にはコストの削減につながるトータルパッケージングソリューションは、Nampak社の特徴です。Nampak R&Dは、パッケージング業界における技術リーダーシップの地位を維持するために、MSC.Softwareの高度なシミュレーション技術に投資してきました。
Challenge:
この技術を使用して、Nampak R&Dは特定の負荷条件下で流体充填ボトルの挙動を理解するための調査を最近実施しました。有限要素解析(FEA)の技術を使用してボトルの挙動をシミュレートし、解析結果を実験室で試験したボトルと相関させました。流体充填ボトルシミュレーションを解決するこの手法は、比較的新しいFEA法であるため、FE予測結果と物理的実験データとの間のパーセンテージの差に関する利用可能なデータはありませんでした。
Results Validation:
シミュレーションに流体、空気、ボトルを含めることができるため、NampakはMSC Dytranをシミュレーションに使用しました。35gの質量を有する一般的な1リットルのPETボトルを解析のために選択しました。ボトルのトップローディングは、ボトルの破損点まで実施されました。この研究では、ボトルの破損は、圧縮変位の増加に伴って抵抗性負荷が低下する点として定義されました。動的な挙動や、ボトル内の水量と空気量の影響を考慮に入れるように設計されており、様々な速度がソリューションの精度に影響するかどうかを確認するために、MSC Dytranシミュレーションでは、2つの異なるトップロード速度を使用しました。MSC Dytranモデルは、(デフォルトでは)水がボトルの側壁に及ぼす静圧効果を考慮していないので、この静水圧を考慮して(設定を追加し)3番目のモデルを実行しました。 すべての物理的検査が実施された後、破壊点はボトルネックにあることが明らかになりました。FEモデルは、物理的に試験されたボトルと全く同じ場所で破壊が起こると予測しました。3つの異なるMSC Dytranモデルはすべて、テストされた値の8%以内で正確なトップロード破壊予測をします。最も正確なモデルは、試験結果からわずか3%の誤差で、ボトル内の静水圧も含むものでした。シミュレーションのトップロードを異なる速度で実行した結果は、結果に大きな影響を与えませんでした。この研究の結果は、MSC Dytran充填ボトル解析と物理的な実験室試験データとの間に良好な相関があることを示唆しています。どのようなFEモデルでも、材料特性、厚さ、および幾何学的形状には常にある程度の不確実性が存在します。この研究の結果に基づいて、FE予測と実際の物理的検査との間に10%の許容誤差が合理的であることが示唆されます。Nampak R&DのカスタマーソリューションセンターのプロジェクトマネージャーであるMartin Sheen氏は、シミュレーションがどのようにプラスチックボトルの設計と製造における重要な要素になっているかについて説明しています。「MSC Dytranは、ペットボトルの設計において重要な要素として確立しています。コストのかかる金型製造に先立ち、提案された設計について信頼できる充填ボトル解析を行うことができました。これにより、お客様は当初の設計に自信を持っているだけでなく、原材料の節約につながる肉厚の最適化が可能になり、生産コストを削減できます。」と述べています。
 
 
pdf iconDOWNLOADdown arrow

Company:

Hyundai Motor Company

Products:

Actran Acoustics

Industries:

Automotive

Challenge:

Save time in finding the best Active Pedestrian Alerting System design without prototype

Solution:

Apply Actran to study complete speaker driver and its interactions with its acoustic environment


 
pdf iconDOWNLOADdown arrow

Company:

Products:

Dytran
Patran

Industries:

Aerospace
Defense

Overview:
本研究では、MSC Dytranを用いた陽解法有限要素解析により、土壌や堅い地盤に低速衝突する小型無人航空機の胴体着陸を調査しました。砂利、アスファルト、セメント、草および硬質土壌に胴体着陸する小型無人航空機は、人間のコントロールを超える突風などにより、着陸中に低速衝撃を受ける可能性があります。したがって、この研究の主な目的は、低速衝撃による荷重が航空機の構造に及ぼす影響を調査し、設計プロセスに貢献することでした。小型無人航空機の低速衝撃解析は、胴体と胴体―翼の組み合わせに、内部補強を施したものとしなかったものを別々に行い、異なるサブ構造を解析モデルに追加する効果について検討しました。胴体と後部テールブームの間は実際の飛行試験での不時着のために頻繁に耐えていましたが、そのことをあらかじめ予測することができず、ダメージゾーンは陽解法有限要素解析によって位置が特定されました。陽解法有限要素解析による著しい破壊領域の特定は、設計改善のために貴重な情報を提供しています。
Challenge:
この研究の主な目的は、低速衝撃による荷重が航空機の構造に及ぼす影響を調査し、設計プロセスに貢献することでした。
Solution:
MSC Dytran、Patranの導入
Results Validation:
下の図は、堅い地面に着陸する内部補強材を持たない胴体のシミュレーション結果の例を示しています。フォン・ミーゼス応力の等高線と変形後の胴体形状は、衝突後約0.04秒後を表示しています。内部補強材が存在しないため、地面に向かって大きく変形しました。このような変形は、航空機が停止するまで着陸中に翼が地面に接触してはならないので、胴体着陸をする無人航空機においては非常に危険です。
Benefits:
MSC-Dytranシミュレーションにより、チームがテールブームにおける損傷領域のおおよその位置を予測して設計することができました。下の図は、テールブームに蓄積されたストレスを示しています。予想される応力蓄積の位置は、不時着後に観察された実際の損傷領域とほぼ一致しています。MSC-Dytran陽解法有限要素解析による損傷領域の予測は、テールブームにおける設計改善に有益な情報を提供しました。
 
 
pdf iconDOWNLOADdown arrow

Company:

Products:

Dytran
MSC Nastran
Patran

Industries:

Energy
Heavy Equipment

Overview:
毎分2万回転中半の角速度で回転する150ポンドのローターを使用して、フライホイールエネルギー貯蔵システムを設計する際には、ストレス、振動、封じ込めの安全性、熱問題のすべてを解決する必要があります。しかし、マサチューセッツ州ウィルミントンにある電気通信業界のエネルギー貯蔵システムのリーディングメーカーであるビーコンパワー社(Beacon Power Corporation)のローター・ダイナミックスのDavid Ansbigian氏によれば、物理的試験のためのプロトタイプを開発することは時間と費用が非常にかかります。設計効率を向上させるために、プロトタイプと物理的テストの費用を負担する前に、MSC Patran、MSC Nastran、MSC Dytranを導入して問題をシミュレートしました。副次的なメリットとして、ビーコンパワーは材料コストを50%削減しながら設計を改善しました。 「MSCソフトウェアがなければ、ローターの動特性を解析することはできません。MSC Nastranは、複素固有値解析、周波数応答解析、および非線形解析を解決する際にジャイロスコープの硬化影響を含む完全な3D有限要素モデルを実行できる唯一のコードであることがわかりました。複素固有値解析により、さまざまなローター設計のキャンベルダイアグラムを作成することができます。周波数応答解析は、アンバランスに応じたローターの支持変位と荷重を与え、非線形解析は地震の影響を特定します。」とAnsbigian氏は言いました。「設計時間を大幅に短縮し、スループットを少なくとも5倍向上させました。私は、MSC Softwareエンジニアによって特別に調整されたMSC Patran / MSC Nastranの組み合わせを使用して、回転構造のジャイロスコープ効果を解決するために、1日で2~3回の設計の繰り返しをすることができます。CADシステム(Pro-E)からMSC Patranにさまざまなデザインを直接インポートし、有限要素モデルを作成することができます。その後、モデルはMSC Nastranを使用して実行され、結果データベースがMSC Patranにシームレスにインポートされて結果処理されます。明らかに、MSC PatranとMSC Nastranの助けを借りて、より多くの設計を繰り返すことができます。
 
 
pdf iconDOWNLOADdown arrow

Company:

Products:

Dytran

Industries:

Automotive

Challenge:
サイドカーテンエアバッグは、自動車衝突時の車外放出や重傷の可能性を低減する能力を実証しています。これらの新しいタイプのエアバッグを開発しているエンジニアは、仮想製品開発ツール(VPD)の支援を受け、エンジニアがエアバッグのメカニズムと動的な膨張をより完全に解析できるようにします。自動車安全装置の世界最大のメーカーであるAutolivは、MSC.Dytranを使用してガスフローや格納容器の衝撃強さなど、膨張中に発生する動的事象をシミュレートすることにより、サイドカーテンエアバッグシステムを開発しました。
Solution:
MSC.Dytranの導入
Benefits:
「流体の流れ、エアバッグの動的な膨張と、エアバッグの展開との相互作用をモデル化するためにMSC.Dytranをよく使用します。」Autolivの製品アナリスト、Jesse Crookston氏は言います。「このソフトウェアは、物理的メカニズムの詳細を理解すること、そしてコンポーネントの最適化を支援します。例えば、モデルが特定の領域で高いストレスを示し、実験と相関がある場合、モデルのさまざまなバリエーションをテストして、デザインを最適化することができます。」
 
 
pdf iconDOWNLOADdown arrow

Company:

the Agency for Defense Development (ADD) in Daejeon, South Korea.

Products:

Dytran
MSC Nastran
Patran

Industries:

Aerospace
Defense
Heavy Equipment

Challenge:
ADDは、高速発射体の衝撃に耐える能力について、様々な翼内燃料タンクの設計を評価する必要があります。彼らの目標は、衝突後の残存構造に対して残存強度や構造/フラッタ剛性などの生存率解析を実行するために、衝突による損傷を予測し定量化することです。これは、航空機が安全に基地に戻ることができるように、航空機がどのように飛行するべきかについての理解与えてくれます。これらの目的を達成するためには、発射体が流体を含む構造物に衝突して貫通し、またはその近傍で爆発して爆風を発生させるときに生じる、流体力学的な打ち込みの非常に複雑な現象をシミュレートする必要があります。
Solution:
Patran, MD Nastran, Flightloads, and Dytran
Results Validation:
この結果は、燃料タンクの中央で始まるデトネーションがタンクを膨張させ、最終的にタンクを破裂させることを示しています。これらの結果は、打ち込みの物理学計算と一致し、Dytranが流体力学的打ち込みの複雑な物理現象を正確にシミュレートできることを証明しています。「機体構造を評価するための実弾射撃試験の必要性を減らし、より広い範囲の被害シナリオに基づいて飛行機を基地に戻す戦略を開発することによって、時間と費用を節約する有望な将来をもたらします」とKimは結論づけました。
Benefits:
ADDは、発射体の貫通と爆発によって引き起こされた機体の損傷をシミュレートする能力を実証しました。これにより、必要な実弾射撃試験の量を減らし、はるかに多くの損害シナリオの影響を評価できるようにすることが期待されています。
 
 
pdf iconDOWNLOADdown arrow

Pages