The original and best

With over 50 years of real world experience in structural FEA, MSC Nastran is by far the industry standard for structural analysis simulation

MSC Nastran嵌入式疲劳

集成化的疲劳仿真
在 MSC Nastran 范围内计算疲劳损伤和寿命,并针对重量和耐久性对产品设计进行优化

Horizontal spacer

大多数结构系统在其使用寿命期间都会经受周期性载荷,设计师在设计时需要确保其不会在寿命早期失效。由于早期失效会发生保修成本、损失市场份额,因此疲劳或耐久性研究是产品开发的关键部分。尽管疲劳分析一般被视为设计的关键要素,但却常常被草率处理,或者采用低效的顺序方式,在耐久性分析之后会进行应力分析,这就延长了开发时间、增加了成本。使用多种产品会进一步加大成本并延长分析时间。

MSC Nastran 嵌入式疲劳(NEF)是一种创新的耐久性分析模块,其特点是在 MSC Nastran 中集成了疲劳计算。实际上,应力和疲劳计算可出现在同一个并发操作中。这相对于以图形用户界面为基础的疲劳处理来说是一个巨大的进步,后者是在完成应力研究后再进行疲劳研究,并且通常由不同的分析团队进行;同时这也为工程师们改进产品寿命提供了大量的新机会。这些功能包括: 

  • 应力寿命(S-N) 
  • 应变寿命(E-N)
  • 采用临界面法处理多轴响应
  • 高达 100 个线程的并行处理
  • 在单一作业提交中完成多种疲劳分析

能力:

更迅速地进行疲劳分析 


Fatigue analysis of a wheel carrier. Nodes:325k, Elements: 200k, 8 Load Sources
 

采用 NEF 可加快疲劳分析的原因有很多种,但其中两个最重要的原因如下:

1.传统方法的步骤是提取有限元分析结果,然后将其传送并提交给疲劳程序。遗憾的是,这种方法会影响解决方案的性能,需要海量的计算资源并占用分析师大量的时间。借助 NEF,您可以立即在有限元分析中进行疲劳计算,这就节约了所需的时间和工作,提高了分析效率。例如,传统的疲劳分析处理需要 8 小时,而采用 NEF 仅需 38 分钟。
  1.   [资料来源]
  2. 2.由于可在 MSC Nastran 中进行疲劳计算,因而减少了在有限元分析与疲劳程序之间移动大量中间文件所需的高昂成本和宝贵时间。对耐久性分析所做的简化可节约计算资源、形成额外的仿真能力并提高生产率。例如,疲劳分析涉及到 191 个文件,而使用 NEF 时仅涉及到2个  [资料来源 p.62]

优化产品寿命、减轻产品重量 


Initial Shape: Mass=15.5kg, fatigue life=105.52 cycles
Optimized Shape: Mass=13.5 kg, fatigue life= 108 Cycles. Design changes led to a 13% savings in mass and an increase in fatigue life
 

NEF尤其适用于既要尽量减轻产品质量、又要得到所要求的疲劳寿命的情况。支持在 MSC Nastran 内进行疲劳计算,可扩展至设计优化(SOL= 200)。如今可在考虑疲劳寿命以及其他性能指标(如质量)的情况下对模型进行优化。如需考虑并优化多个现有模型,则可以利用 MSC Nastran 的多模型优化功能。这种方式提供的是真正经过优化的模型,可以快速地使用,无需在设计优化分析之后对设计进行验证。 

 

For general and product specific platform support, please visit our Platform Support page.