Tower International






Stamping operations used to form metallic automotive components can generate forces of thousands of tons. The tools (die components) that form these products must be able to withstand this cyclic loading environment for the life of the vehicle program. At the same time, it is important to optimize the tool design in order to be competitive. The evolution of higher strength materials also adds to the challenge. The large loads involved in forming these components increase the challenge of designing robust tools. Both linear and non-linear analysis must be used to support the tool design process.

Results Validation:

“In order to get reliable predictions, we prefer to use the nonlinear software Marc to solve these types of problems because it accounts for the inherent nonlinearities of materials experiencing plastic strain,” said Yueming Cheng, Computer Aided Engineering Engineer at Tower International. “In years of using Marc and Mentat, I have found it to be capable of accurately simulating a wide range of nonlinear product behavior under static, dynamic and multi-physics loading scenarios. Marc is also one of the commercial solutions in markets I am aware of that has robust manufacturing simulation capabilities, with the ability to predict general damage, failure and crack propagation.”

  • Accurate simulations help reduce risk of downtime and lost revenues, by predicting regions of potential failure
  • Get the design right the first time with computer models and deliver reliable performance