What's New Webinar - SimXpert 2012

Advanced Thermal Modeling Tools

Increase Reliability of Cardiovascular devices with Engineering Simulation

Simulation Methods for Muscle Modeling and Human Tongue Analysis

Value of Simulation for Composites Modeling and Certification of Wind Turbine Blades

Improve Wind Turbine Reliability Reduce Time to Market

Multibody Dynamics analysis with flexible body integration

Improve Gear Box Reliability Using Wind Load Modeling

Noise Attenuation: Model Poro-elastic Materials using Actran

Introduction to Actran for Aero-Acoustic Analysis

Introduction to Actran for Vibro-Acoustic Analysis

Introduction to Actran for Acoustics Radiation Analysis

Explicit Structural Analysis using MSC Nastran

During the life cycle, most products experience events that involve rapid loading whose simulation requires users to account for inertia loads, unlike in a quasi-static analysis. Moreover, in order to capture the deformation and stress state of the structure accurately, it becomes necessary to use very short time steps, especially since the events could last only a few milliseconds. MSC Nastran, with its state of the art explicit solver technology from integrated LS-Dyna and Dytran, enables users to simulate real world high-speed events, minimizing the time and money spent on design and experimental testing. Extreme distortions and possible failures that structures may undergo during these events are accurately simulated with MSC Nastran helping users solve problems of crush, crash and impact in aerospace, automotive, consumer products, electronics and other industries. This webinar provides an overview of the explicit analysis capabilities of MSC Nastran along with a demonstration through an example problem.

Progressive Ply Failure using MSC Nastran

The pursuit of higher fuel efficiency from lighter structures has increased the use of composites in almost every transportation vehicle made today. Additionally, composite's light weight, corrosion resistance, superior strength and stiffness makes them ideal candidates for use in sporting equipment, recreational vehicles, wind turbines, and multiple other products. However, superior performance doesn't come without a cost in terms of testing and analysis complexity. First-ply failure (FPF) is often acceptable to sign off a drawing. However, a FPF-only analysis may lead to excessively conservative sizing. Progressive Failure Analysis (PFA) allows engineers to better answer questions about the post-FPF behavior of a structure, such as: What is the residual strength of the part after FPF? How much additional load carrying capability is left after FPF? What is the separation between FPF and last ply failure (LPF)? And more ... A better understanding of post-FPF performance of a structure can lead to an overall better understanding of the structure, more confidence in the design and less risk.

Analysis Chaining using MSC Nastran

Engine fan blade out (FBO) is one of the most catastrophic events in the aerospace industry and is a primary concern for the aircraft and jet engine manufacturers to accurately predict the fan blade out loads and comply with the Federal Aviation Administration (FAA) safety requirements for certification. This webcast presents an efficient multi-disciplinary, implicit-explicit-implicit chaining analysis process for more accurate simulation of engine fan blade-out condition using MSC Nastran. FBO event is extremely nonlinear due to heavy wide cord fan blades incorporated for new generation of high by-pass ratio jet engines to meet airframe manufacturers' demand for higher thrust engines with improved performance and optimum weight. Analytical procedures are used by airframers and by engine manufacturers to support design of propulsion installation and adjacent wing structures. An example problem is presented which illustrates the application of the new technologies in MSC Nastran to predict the complex FBO event followed by rotor dynamics to simulate the engine unbalance.